819 resultados para Greenschist Facies Deformation
Resumo:
This study reports alternation of D2 extension-related and D3 contraction-related microfabrics in the northern hanging wall block of a gneiss dome-like structure recognized in the Évora Massif (Ossa-Morena Zone). In the Arraiolos – Santo Antonio de Alcorrego traverse high- to low-grade mylonites are dominant. Microfabrics related to D2 ductile deformation and M2 high-amphibolite to greenschist facies characterize an extensional shear zone with telescoping metamorphic isograds. D2 microstructures indicate shear sense with top-to-SE. Superposition of D3 contraction developed under greenschist facies (M3) producing folding of D2 microfabrics, mylonitization of granites along strike-slip shear zones and retrogression of M2 mineral assemblages.
Resumo:
Pizgrischite, (Cu,Fe)Cu14PbBi17S35, is a new mineral species named after the type locality, Piz Grisch Mountain, Val Ferrera, Graubunden, Switzerland. This sulfosalt occurs as thin, striated, metallic lead-grey blades measuring up to I cm in length, embedded in quartz and associated with tetrahedrite, chalcopyrite, pyrite, sphalerite, emplectite and derivatives of the aikinite-bismuthinite series. In plane-polarized light, the new species is brownish grey with no perceptible pleochroism; under crossed nicols in oil immersion, it presents a weak anisotropy with dark brown tints. Minimum and maximum reflectance values (in %) in air are: 40.7-42.15 (470 nm), 41.2-43.1 (546 nm), 41.2-43.35 (589 nm) and 40.7-43.3 (650 nm). Cleavage is perfect along 001 I and well developed on {010}. Abundant polysynthetic twinning is observed on (010). The mean micro-indentation hardness is 190 kg/mm(2) (Mohs hardness 3.3), and the calculated density is 6.58 g/cm(3). Electron-microprobe analyses yield (wt%; mean result of seven analyses): Cu 16.48, Pb 2.10, Fe 0.77, Bi 60.70, Sb 0.35, S 19.16, Se 0.04, total 99.60. The resulting empirical chemical formula is (Cu15.24Fe0.80Pb0.60)(Sigma 16.64)(Bi17.07Sb0.17)(Sigma 17.24)(S35.09Se0.03)(Sigma 35.12), in accordance with the formula derived from the single-crystal refinement of the structure, (Cu,Fe)Cu14PbBi17S35. Pizgrischite is monoclinic, space group C2/m, with the following unit-cell parameters: a 35.054(2), b3.91123(I), c43.192(2) angstrom, beta 96.713(4)degrees, V5881.24 angstrom(3), Z=4. The strongest seven X-ray powder-diffraction lines [d in angstrom (I)(hkl)] are: 5.364(40)((6) over bar 04), 4.080(50)((8) over bar 05), 3.120(40)(118), 3.104(68)((3) over bar 18), 2.759(53) ((9) over bar 11),2.752(44)(910) and 1.956(100)(020). The crystal structure is an expanded monoclinic derivative of kupcikite. Pizgrischite belongs to the cuprobismutite series of bismuth sulfosalts but, sensu stricto, it is not a homologue of cuprobismutite. At the type locality. pizarischite is the result of the Alpine metamorphism under greenschist-facies conditions of pre-Tertiary hydrothermal Cu-Bi mineralization.
Resumo:
Cleusonite, (Pb,Sr)(U4+,U6+) (Fe2+,Zn)(2) (Ti,Fe2+,Fe3+)(18) (O,OH)(38), is a new member of the crichtonite group. It was found at two occurrences in greenschist facies metamorphosed gneissic series of the Mont Fort and Siviez-Mischabel Nappes in Valais, Switzerland (Cleuson and Bella Tolla summit), and named after the type locality. It occurs as black opaque cm-sized tabular crystals with a bright sub-metallic lustre. The crystals consist of multiple rhombohedra and hexagonal prisms that are generally twinned. Measured density is 4.74(4) g/cm(3) and can be corrected to 4.93(12) g/cm(3) for macroscopic swelling due to radiation damage; the calculated density varies from 5.02(6) (untreated) to 5.27(5) (heat-treated crystals); the difference is related to the cell swelling due to the metamictisation. The empirical formula for cleusonite from Cleuson is (Pb0.89Sr0.12)(Sigma=1.01) (U0.79+4U0.30+6)(Sigma=1.09) (Fe1.91+2Zn0.09)(Sigma=2.00) (Ti11.80Fe3.44+2Fe2.33+3V0.19+5Mn0.08Al0.07)(Sigma=17.90) [O-35.37(OH)(2.63)](Sigma=38). Cations were measured by electron microprobe, the presence of structural (OH) was confirmed by infrared spectroscopy and the U6+/U4+ and Fe2+/Fe3+ ratios were determined by X-ray photoelectron spectroscopy. Cleusonite is partly metamict, and untreated crystals only show three major X-ray diffraction peaks. Because of this radiation-damaged state, the mineral appears optically isotropic and shows a light-grey to white colour in reflected polarized light. Cleusonite is trigonal, space group R $(3) over bar $, and unit-cell parameters are varying from a = 10.576(3), c = 21.325(5) angstrom (untreated crystal) to a = 10.4188(6), c = 20.942(1) angstrom (800 degrees C treatment) and to a = 10.385(2), c = 20.900(7) angstrom (1000 degrees C treatment). The three cells give a common axial ratio 2.01 (1), which is identical to the measured morphological one 2.04(6). ne name cleusonite also applies to the previously described ``uranium-rich senaite'' from Alinci (Macedonia) and the ``plumbodavidite'' from Huanglongpu (China).
Resumo:
The Guelb Moghrein Fe oxide-Cu-Au-Co deposit is located at the western boundary of the West African craton in NW Mauritania. The wall rocks to the mineralization represent a meta-volcanosedimentary succession typical of Archaean greenstone belts. Two types of meta-volcanic rocks are distinguished: (1) volcanoclastic rocks of rhyodacite-dacite composition (Sainte Barbe volcanic unit), which form the stratigraphic base; (2) tholeiitic andesites-basalts (Akjoujt meta-basalt unit). The trace element signature of both types is characteristic of a volcanic arc setting. A small meta-pelitic division belongs to the Sainte Barbe volcanic unit. A meta-carbonate body, which contains the mineralization, forms a tectonic lens in the Akjoujt meta-basalt unit. It can be defined by the high X(mg) (=36) of Fe-Mg carbonate, the REE pattern and the delta(13)C values of -18 to -17 parts per thousand as a marine precipitate similar to Archaean banded iron formation (BIF). Additionally, small slices of Fe-Mg clinoamphibole-chlorite schist in the meta-carbonate show characteristics of marine shale. This assemblage, therefore, does not represent an alteration product, but represents an iron formation unit deposited on a continental shelf, which probably belongs to the Lembeitih Formation. The hydrothermal mineralization at 2492 Ma was contemporaneous with regional D(2) thrusting of the Sainte Barbe volcanic unit and imbrications of the meta-carbonate in the upper greenschist facies. This resulted in the formation of an ore breccia in the meta-carbonate, which is enriched in Fe, Ni, Co, Cu, Bi, Mo, As and Au. Massive sulphide ore breccia contains up to 20 wt% Cu. The ore fluid was aqueous-carbonic in nature and either changed its composition from a Mg-rich oxidizing to an Fe-rich reducing fluid or the two fluid types mixed at the trap site. All lithologies at Guelb Moghrein were deformed by D(3) thrusting to the east in the lower greenschist facies. The mobility of REE in the retrogressed rocks explains the formation of a second generation of hydrothermal monazite, which was dated at c. 1742 Ma. Archaean rocks of the West African craton extend to the west to Guelb Moghrein. The active continental margin was deformed and mineralized in the Late Archaean-Early Proterozoic and again reactivated in the Mid-Proterozoic and Westphalian, showing that the western boundary of the craton was reactivated several times.
Resumo:
Contact aureoles provide an excellent geologic environment to study the mechanisms of metamorphic reactions in a natural system. The Torres del Paine (TP) intrusion is one of the most spectacular natural laboratories because of its excellent outcrop conditions. It formed in a period from 12.59 to 12.43 Ma and consists of three large granite and four smaller mafic batches. The oldest granite is on top, the youngest at the bottom of the granitic complex, and the granites overly the mafic laccolith. The TP intruded at a depth of 2-3 km into regional metamorphic anchizone to greenschist facies pelites, sandstones, and conglomerates of the Cerro Toro and Punta Barrosa formations. It formed a thin contact aureole of 150-400 m width. This thesis focuses on the reaction kinetics of the mineral cordierite in the contact aureole using quantitative textural analysis methods. First cordierite was formed from chlorite break¬down (zone I, ca. 480 °C, 750 bar). The second cordierite forming reaction was the muscovite break-down, which is accompanied by a modal decrease in biotite and the appearance of k- feldspar (zone II, 540-550 °C, 750 bar). Crystal sizes of the roundish, poikiloblastic cordierites were determined from microscope thin section images by manually marking each crystal. Images were then automatically processed with Matlab. The correction for the intersection probability of each crystal radius yields the crystal size distribution in the rock. Samples from zone I below the laccolith have the largest crystals (0.09 mm). Cordierites from zone II are smaller, with a maximum crystal radius of 0.057 mm. Rocks from zone II have a larger number of small cordierite crystals than rocks from zone I. A combination of these quantitative analysis with numerical modeling of nucleation and growth, is used to infer nucleation and growth parameters which are responsible for the observed mineral textures. For this, the temperature-time paths of the samples need to be known. The thermal history is complex because the main body of the intrusion was formed by several intrusive batches. The emplacement mechanism and duration of each batch can influence the thermal structure in the aureole. A possible subdivision of batches in smaller increments, so called pulses, will focus heat at the side of the intrusion. Focusing all pulses on one side increases the contact aureole size on that side, but decreases it on the other side. It forms a strongly asymmetric contact aureole. Detailed modeling shows that the relative thicknesses of the TP contact aureole above and below the intrusion (150 and 400 m) are best explained by a rapid emplacement of at least the oldest granite batch. Nevertheless, temperatures are significantly too low in all models, compared to observed mineral assemblages in the hornfelses. Hence, an other important thermal mechanisms needs to take place in the host rock. Clastic minerals in the immature sediments outside the contact aureole are hydrated due to small amounts of expelled fluids during contact metamorphism. This leads to a temperature increase of up to 50 °C. The origin of fluids can be traced by stable isotopes. Whole rock stable isotope data (6D and δ180) and chlorine concentrations in biotite document that the TP intrusion induced only very small amounts of fluid flow. Oxygen whole rock data show δ180 values between 9.0 and 10.0 %o within the first 5 m of the contact. Values increase to 13.0 - 15.0 %o further away from the intrusion. Whole rock 6D values display a more complex zoning. First, host rock values (-90 to -70 %o) smoothly decrease towards the contact by ca. 20 %o, up to a distance of ca. 150 m. This is followed by an increase of ca. 20 %o within the innermost 150 m of the aureole (-97.0 to -78 %o at the contact). The initial decrease in 6D values is interpreted to be due to Rayleigh fractionation accompanying the dehydration reactions forming cordierite, while the final increase reflects infiltration of water-rich fluids from the intrusion. An over-estimate on the quantity and the corresponding thermal effect yields a temperature increase of less than 30 °C. This suggests that fluid flow might have contributed only for a small amount to the thermal evolution of the system. A combination of the numerical growth model with the thermal model, including the hydration reaction enthalpies but neglecting fluid flow and incremental growth, can be used to numerically reproduce the observed cordierite textures in the contact aureole. This yields kinetic parameters which indicate fast cordierite crystallization before the thermal peak in the inner aureole, and continued reaction after the thermal peak in the outermost aureole. Only small temperature dependencies of the kinetic parameters seem to be needed to explain the obtained crystal size data. - Les auréoles de contact offrent un cadre géologique privilégié pour l'étude des mécanismes de réactions métamorphiques associés à la mise en place de magmas dans la croûte terrestre. Par ses conditions d'affleurements excellentes, l'intrusion de Torres del Paine représente un site exceptionnel pour améliorer nos connaissances de ces processus. La formation de cette intrusion composée de trois injections granitiques principales et de quatre injections mafiques de volume inférieur couvre une période allant de 12.50 à 12.43 Ma. Le plus vieux granite forme la partie sommitale de l'intrusion alors que l'injection la plus jeune s'observe à la base du complexe granitique; les granites recouvrent la partie mafique du laccolite. L'intrusion du Torres del Paine s'est mise en place a 2-3 km de profondeur dans un encaissant métamorphique. Cet encaissant est caractérisé par un métamorphisme régional de faciès anchizonal à schiste vert et est composé de pélites, de grès, et des conglomérats des formations du Cerro Toro et Punta Barrosa. La mise en place des différentes injections granitiques a généré une auréole de contact de 150-400 m d'épaisseur autour de l'intrusion. Cette thèse se concentre sur la cinétique de réaction associée à la formation de la cordiérite dans les auréoles de contact en utilisant des méthodes quantitatives d'analyses de texture. On observe plusieurs générations de cordiérite dans l'auréole de contact. La première cordiérite est formée par la décomposition de la chlorite (zone I, environ 480 °C, 750 bar), alors qu'une seconde génération de cordiérite est associée à la décomposition de la muscovite, laquelle est accompagnée par une diminution modale de la teneur en biotite et l'apparition de feldspath potassique (zone II, 540-550 °C, 750 bar). Les tailles des cristaux de cordiérites arrondies et blastic ont été déterminées en utilisant des images digitalisées des lames minces et en marquant individuellement chaque cristal. Les images sont ensuite traitées automatiquement à l'aide du programme Matlab. La correction de la probabilité d'intersection en fonction du rayon des cristaux permet de déterminer la distribution de la taille des cristaux dans la roche. Les échantillons de la zone I, en dessous du lacolite, sont caractérisés par de relativement grands cristaux (0.09 mm). Les cristaux de cordiérite de la zone II sont plus petits, avec un rayon maximal de 0.057 mm. Les roches de la zone II présentent un plus grand nombre de petits cristaux de cordiérite que les roches de la zone I. Une combinaison de ces analyses quantitatives avec un modèle numérique de nucléation et croissance a été utilisée pour déduire les paramètres de nucléation et croissance contrôlant les différentes textures minérales observées. Pour développer le modèle de nucléation et de croissance, il est nécessaire de connaître le chemin température - temps des échantillons. L'histoire thermique est complexe parce que l'intrusion est produite par plusieurs injections successives. En effet, le mécanisme d'emplace¬ment et la durée de chaque injection peuvent influencer la structure thermique dans l'auréole. Une subdivision des injections en plus petits incréments, appelés puises, permet de concentrer la chaleur dans les bords de l'intrusion. Une mise en place préférentielle de ces puises sur un côté de l'intrusion modifie l'apport thermique et influence la taille de l'auréole de contact produite, auréole qui devient asymétrique. Dans le cas de la première injection de granite, une modélisation détaillée montre que l'épaisseur relative de l'auréole de contact de Torres del Paine au-dessus et en dessous de l'intrusion (150 et 400 m) est mieux expliquée par un emplacement rapide du granite. Néanmoins, les températures calculées dans l'auréole de con¬tact sont trop basses pour que les modèles thermiques soient cohérants par rapport à la taille de cette auréole. Ainsi, un autre mecanisme exothermique est nécessaire pour permettre à la roche encais¬sante de produire les assemblages observés. L'observation des roches encaissantes entourant les granites montre que les minéraux clastiques dans les sédiments immatures au-dehors de l'auréole sont hydratés suite à la petite quantité de fluide expulsée durant le métamorphisme de contact et/ou la mise en place des granites. Les réactions d'hydratation peuvent permettre une augmentation de la température jusqu'à 50 °C. Afin de déterminer l'origine des fluides, une étude isotopique de roches de l'auréole de contact a été entreprise. Les isotopes stables d'oxygène et d'hydrogène sur la roche totale ainsi que la concentration en chlore dans la biotite indiquent que la mise en place des granites du Torres del Paine n'induit qu'une circulation de fluide limitée. Les données d'oxygène sur roche totale montrent des valeurs δ180 entre 9.0 et 10.0%o au sein des cinq premiers mètres du contact. Les valeurs augmentent jusqu'à 13.0 - 15.0 plus on s'éloigne de l'intrusion. Les valeurs 5D sur roche totale montrent une zonation plus complexe. Les valeurs de la roche encaissante (-90 à -70%o) diminuent progressivement d'environ 20%o depuis l'extérieur de l'auréole jusqu'à une distance d'environ 150 m du granite. Cette diminution est suivie par une augmentation d'environ 20%o au sein des 150 mètres les plus proches du contact (-97.0 à -78%o au contact). La diminution initiale des valeurs de 6D est interprétée comme la conséquence du fractionnement de Rayleigh qui accompagne les réactions de déshydratation formant la cordiérite, alors que l'augmentation finale reflète l'infiltration de fluide riche en eau venant de l'intrusion. A partir de ces résultats, le volume du fluide issu du granite ainsi que son effet thermique a pu être estimé. Ces résultats montrent que l'augmentation de température associée à ces fluides est limitée à un maximum de 30 °C. La contribution de ces fluides dans le bilan thermique est donc faible. Ces différents résultats nous ont permis de créer un modèle thermique associé à la for¬mation de l'auréole de contact qui intègre la mise en place rapide du granite et les réactions d'hydratation lors du métamorphisme. L'intégration de ce modèle thermique dans le modèle numérique de croissance minérale nous permet de calculer les textures des cordiérites. Cepen¬dant, ce modèle est dépendant de la vitesse de croissance et de nucléation de ces cordiérites. Nous avons obtenu ces paramètres en comparant les textures prédites par le modèle et les textures observées dans les roches de l'auréole de contact du Torres del Paine. Les paramètres cinétiques extraits du modèle optimisé indiquent une cristallisation rapide de la cordiérite avant le pic thermique dans la partie interne de l'auréole, et une réaction continue après le pic thermique dans la partie la plus externe de l'auréole. Seules de petites dépendances de température des paramètres de cinétique semblent être nécessaires pour expliquer les don¬nées obtenues sur la distribution des tailles de cristaux. Ces résultats apportent un éclairage nouveau sur la cinétique qui contrôle les réactions métamorphiques.
Resumo:
The detailed geological mapping and structural study of a complete transect across the northwestern Himalaya allow to describe the tectonic evolution of the north Indian continental margin during the Tethys ocean opening and the Himalayan Orogeny. The Late Paleozoic Tethys rifting is associated with several tectonomagmatic events. In Upper Lahul and SE Zanskar, this extensional phase is recorded by Lower Carboniferous synsedimentary transtensional faults, a Lower Permian stratigraphic unconformity, a Lower Permian granitic intrusion and middle Permian basaltic extrusions (Panjal Traps). In eastern Ladakh, a Permian listric normal fault is also related to this phase. The scarcity of synsedimentary faults and the gradual increase of the Permian syn-rift sediment thickness towards the NE suggest a flexural type margin. The collision of India and Asia is characterized by a succession of contrasting orogenic phases. South of the Suture Zone, the initiation of the SW vergent Nyimaling-Tsarap Nappe corresponds to an early phase of continental underthrusting. To the S, in Lahul, an opposite underthrusting within the Indian plate is recorded by the NE vergent Tandi Syncline. This structure is associated with the newly defined Shikar Beh Nappe, now partly eroded, which is responsible for the high grade (amphibolite facies) regional metamorphism of South Lahul. The main thrusting of the Nyimaling-Tsarap Nappe followed the formation of the Shikar Beh Nappe. The Nyimaling-Tsarap Nappe developed by ductile shear of the upper part of the subducted Indian continental margin and is responsible for the progressive regional metamorphism of SE Zanskar, reaching amphibolite facies below the frontal part of the nappe, near Sarchu. In Upper Lahul, the frontal parts of the Nyimaling-Tsarap and Shikar Beh nappes are separated by a zone of low grade metamorphic rocks (pumpellyite-actinolite facies to lower greenschist facies). At high structural level, the Nyimaling-Tsarap Nappe is characterized by imbricate structures, which grade into a large ductile shear zone with depth. The related crustal shortening is about 87 km. The root zone and the frontal part of this nappe have been subsequently affected by two zones of dextral transpression and underthrusting: the Nyimaling Shear Zone and the Sarchu Shear Zone. These shear zones are interpreted as consequences of the counterclockwise rotation of the continental underthrusting direction of India relative to Asia, which occurred some 45 and 36 Ma ago, according to plate tectonic models. Later, a phase of NE vergent `'backfolding'' developed on these two zones of dextral transpression, creating isoclinal folds in SE Zanskar and more open folds in the Nyimaling Dome and in the Indus Molasse sediments. During a late stage of the Himalayan Orogeny, the frontal part of the Nyimaling-Tsarap Nappe underwent an extension of about 15 km. This phase is represented by two types of structures, responsible for the tectonic unroofing of the amphibolite facies rocks of the Sarchu area: the Sarchu high angle Normal Fault, cutting a first set of low angle normal faults, which have been created by reactivation of older thrust planes related to the Nyimaling-Tsarap Nappe.
Resumo:
Devolatilization reactions and subsequent transfer of fluid from subducted oceanic crust into the overlying mantle wedge are important processes, which are responsible for the specific geochemical characteristics of subduction-related metamorphic rocks, as well as those of arc magmatism. To better understand the geochemical fingerprint induced by fluid mobilization during dehydration and rehydration processes related to subduction zone metamorphism, the trace element and rare earth element (REE) distribution patterns in HP-LT metamorphic assemblages in eclogite-, blueschist- and greenschist-facies rocks of the Ile de Groix were obtained by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) analysis. This study focuses on 10 massive basic rocks representing former hydrothermally altered mid-ocean ridge basalts (MORB), four banded basic rocks of volcano-sedimentary origin and one micaschist. The main hosts for incompatible trace elements are epidote (REE, Th, U, Pb, Sr), garnet [Y, heavy REE (HREE)], phengite (Cs, Rb, Ba, B), titanite [Ti, Nb, Ta, REE; HREE > LREE (light REE)], rutile (Ti, Nb, Ta) and apatite (REE, Sr). The trace element contents of omphacite, amphibole, albite and chlorite are low. The incompatible trace element contents of minerals are controlled by the stable metamorphic mineral assemblage and directly related to the appearance, disappearance and reappearance of minerals, especially epidote, garnet, titanite, rutile and phengite, during subduction zone metamorphism. Epidote is a key mineral in the trace element exchange process because of its large stability field, ranging from lower greenschist- to blueschist- and eclogite-facies conditions. Different generations of epidote are generally observed and related to the coexisting phases at different stages of the metamorphic cycle (e.g. lawsonite, garnet, titanite). Epidote thus controls most of the REE budget during the changing P-T conditions along the prograde and retrograde path. Phengite also plays an important role in determining the large ion lithophile element (LILE) budget, as it is stable to high P-T conditions. The breakdown of phengite causes the release of LILE during retrogression. A comparison of trace element abundances in whole-rocks and minerals shows that the HP-LT metamorphic rocks largely retain the geochemical characteristics of their basic, volcano-sedimentary and pelitic protoliths, including a hydrothermal alteration overprint before the subduction process. A large part of the incompatible trace elements remained trapped in the rocks and was recycled within the various metamorphic assemblages stable under changing metamorphic conditions during the subduction process, indicating that devolatilization reactions in massive basic rocks do not necessarily imply significant simultaneous trace element and REE release.
Resumo:
The Thyon metagranite is located in the frontal part of the Siviez-Mischabel Nappe, in the western Penninic Alps. It is intrusive in a polymetamorphic banded volcanic complex as leucocratic concordant sills with pseudoaplitic rims. A distinct metamorphic schistosity is defined by dark-green Fe-rich biotite. Abundant mesoperthites, chess-board albite and low microcline are presumably related to magmatic stages and/or greenschist-facies metamorphic retrogression. Major, trace element and REE geochemistry, zircon typology, Y and Nb-bearing accessory minerals such as fergusonite and euxenite, all point to a metaluminous to peraluminous alkaline A-type granite. High-precision U-Pb zircon dating yielded a sub-concordant age of 500 +3/-4 Ma. The Thyon metagranite is the third record of a Cambro-Ordovician alkaline magmatic activity in the Alps. As A-type granitic magmatism is common in post-orogenic to anorogenic extensional tectonic regime, the Thyon intrusion could mark the transition between the Cadomian and the Caledonian orogenies.
Resumo:
Numerous measurements by XRD of the Scherrer width at half-peak height (001 reflection of illite), coupled with analyses of clay-size assemblages, provide evidence for strong variations in the conditions of low temperature metamorphism in the Tethyan Himalaya metasediments between the Spiti river and the Tso Morari. Three sectors can be distinguished along the Spiti river-Tso Morari transect. In the SW, the Takling and Parang La area is characterised by a metamorphism around anchizone-epizone boundary conditions. Further north, in the Dutung area, the metamorphic grade abruptly decreases to weak diagenesis, with the presence of mixed-layered clay phases. At the end of the profile towards the NE, a progressive metamorphic increase up to greenschist facies is recorded, marked by the appearance of biotite and chloritoid. The combination of these data with the structural. observations permits to propose that a nappe stack has been crosscut by the younger Dutung-Thaktote extensional fault zone (DTFZ). The change in metamorphism across this zone helps to assess the displacements which occurred during synorogenic extension. In the SW and NE parts of the studied transect, a burial of 12 km has been estimated, assuming a geothermal gradient of 25 degrees C/km. In the SW part, this burial is due to the juxtaposition of the Shikar Beh and Mata nappes and in the NE part, solely to burial beneath the Mata nappe. In the central part of the profile, the effect of the DTFZ is to bring down diagenetic sediments in-between the two aforesaid metamorphic zones. The offset along the Dutung-Thaktote normal faults is estimated at 16 km.
Resumo:
The geologic structures and metamorphic zonation of the northwestern Indian Himalaya contrast significantly with those in the central and eastern parts of the range, where the high-grade metamorphic rocks of the High Himalayan Crystalline (HHC) thrust southward over the weakly metamorphosed sediments of the Lesser Himalaya along the Main Central Thrust (MCT). Indeed, the hanging wall of the MCT in the NW Himalaya mainly consists of the greenschist facies metasediments of the Chamba zone, whereas HHC high-grade rocks are exposed more internally in the range as a large-scale dome called the Gianbul dome. This Gianbul dome is bounded by two oppositely directed shear zones, the NE-dipping Zanskar Shear Zone (ZSZ) on the northern flank and the SW-dipping Miyar Shear Zone (MSZ) on the southern limb. Current models for the emplacement of the HHC in NW India as a dome structure differ mainly in terms of the roles played by both the ZSZ and the MSZ during the tectonothermal evolution of the HHC. In both the channel flow model and wedge extrusion model, the ZSZ acts as a backstop normal fault along which the high-grade metamorphic rocks of the HHC of Zanskar are exhumed. In contrast, the recently proposed tectonic wedging model argues that the ZSZ and the MSZ correspond to one single detachment system that operates as a subhorizontal backthrust off of the MCT. Thus, the kinematic evolution of the two shear zones, the ZSZ and the MSZ, and their structural, metamorphic and chronological relations appear to be diagnostic features for discriminating the different models. In this paper, structural, metamorphic and geochronological data demonstrate that the MSZ and the ZSZ experienced two distinct kinematic evolutions. As such, the data presented in this paper rule out the hypothesis that the MSZ and the ZSZ constitute one single detachment system, as postulated by the tectonic wedging model. Structural, metamorphic and geochronological data are used to present an alternative tectonic model for the large-scale doming in the NW Indian Himalaya involving early NE-directed tectonics, weakness in the upper crust, reduced erosion at the orogenic front and rapid exhumation along both the ZSZ and the MSZ.
Resumo:
330 km 2 of the easter-n part of the Archean Manitou Lakes - Stormy Lake metavolcanic - metasedimentary belt have been mapped and sampled. A large number of rocks ~.vere analyzed for the major and trace constituents including the rare-earth elements (REE). The Stormy Lake - Kawashegamuk Lake area may be subdivided into four major lithological groups of supracrustal rocks 1) A north-facing mafic assemblage, consisting of pillowed tholeiitic basalts and gabbro sills characterized by flat REE profiles, is exposed in the south part of the map area and belongs to a 8000 m thick homoclinal assemblage outside the map area. Felsic pyroclastic rocks believed to have been issued from a large central vent conformably overlie the tholeiites. 2) A dominantly epiclastic group facing to the north consists of terrestrial deposits interpreted to be an alluvial fan deposit ; a submarine facies is represented by turbiditic sediments. 3) The northeastern part of the study area consists of volcanic rocks belonging to two mafic - felsic cycles facing to the southuest ; andesitic flows with fractionated REE patterns make up a large part of the upper cycle, whereas the lower cycle has a stronger chemical polarity being represented by tholeiitic flows, with flat REE, which a r e succeeded by dacitic and rhyolitic pyroclasti cs. iii 4) A thick monotonous succession of tholeiitic pillmled basalt f lows and gabbro sills with flat REE represent the youngest supracrustal rocks. TIle entire belt underwent folding, faulting and granitic plutonism during a tectono-thermal event around 2700 Ma ago. Rocks exposed in the map area were subjected to regional greenschist facies metamorphism, but higher metamorphic grades are present near late granitic intrusions. Geochemical studies have been useful in 1) distinguishing the various rock units ; 2) relating volcanic and intrusive rocks 3) studying the significance of chemical changes due to post magmatic processes 4) determining the petrogenesis of the major volcanic rock types. In doing so, two major volcanic suites have been recognized : a) a tholeiitic suite, mostly represented by mafic rocks, was derived from partial melting of upper mantle material depleted in Ti, K and the light REE ; b) a calc-alkalic suite which evolved from partial melting of amphibolite in the lower crust. The more differentiated magma types have been produced by a multistage process involving partial melting and fractional crystallization to yield a continuum of compos i t i ons ranging from basaltic andesite to rhyolite. A model for the development of the eastern part of the Manitou Lakes - Stormy Lake belt has been proposed.
Resumo:
Three repetitive sequences of northward youngIng, east striking, linear, volcano-sedimentary units are found in the late Archaean BeardmoreGeraldton greenstone belt, situated within the Wabigoon subprovince of the Superior Province of northwestern Ontario. The volcanic components are characterised by basaltic flows that are pillowed at the top and underlain by variably deformed massive flows which may In part be intrusive. Petrographic examination of the volcanic units indicates regional metamorphism up to greenschist facies (T=3250 C - 4500 C, P=2kbars) overprinted by a lower amphibolite facies thermal event (T=5750 C, P=2kbars) confined to the south-eastern portion of the belt. Chemical element results suggest olivine, plagioclase and pyroxene are the main fractionating mineral phases. Mobility studies on the varIOUS chemical elements indicate that K, Ca, Na and Sr are relatively mobile, while P, Zr, Ti, Fet (total iron = Fe203) and Mg are relatively immobile. Discriminant diagrams employing immobile element suggests that the majority of the samples are of oceanic affinity with a minor proportion displaying an island arc affinity. Such a transitional tectonic setting IS also refle.cted in REE data where two groups of volcanic samples are recognised. Oceanic tholeiites are LREE depleted with [La/Sm] N = 0.65 and a relatively flat HREE profile with [Sm/Yb] N = 1.2. Island arc type basalts (calc-alkaline) are LREE enriched, with a [La/Sm] N = 1.6, and a relatively higher fractionated HREE profile with [Sm/Yb] N = 1.9. Petrogenetic modelling performed on oceanIC tholeiites suggests derivation from a depleted spinel lherzolite source which undergoes 20% partial melting. Island arc type basalts can be derived by 10% partial melting of a hypothetical amphibolitised oceanic tholeiite source. The majority of the volcanic rocks in the Beardmore-Geraldton Belt are interpreted to represent fragments of oceanic crust trapped at a consuming plate margin. Subsequent post accretionary intrusion of gabbroic rocks (sensu lato) with calc-alkaline affinity is considered to result in the apparent hybrid tectonic setting recognized for the BGB.
Resumo:
Pseudosections, geothermobarometric estimates and careful petrographic observations of gneissic migmatites and granulites from Neoproterozoic central Ribeira Fold Belt (SE Brazil) were performed in order to quantify the metamorphic P-T conditions during prograde and retrograde evolution of the Brasiliano Orogeny. Results establish a prograde metamorphic trajectory from amphibolite facies conditions to metamorphic peak (T = 850 +/- 50 A degrees C; P = 8 +/- 1 kbar) that promoted widespread dehydrationmelting of 30 to 40% of the gneisses and high-grade granitization. After the metamorphic peak, migmatites evolved with cooling and decompression to T a parts per thousand 500 A degrees C and P a parts per thousand 5 kbar coupled with aH2O increase, replacing the high-grade paragenesis plagioclase-quartz-K-feldspar-garnet by quartz-biotite-sillimanite-(muscovite). Cordierite absence, microtextural observations and P-T results constrain the migmatite metamorphic evolution in the pseudosections as a clockwise P-T path with retrograde cooling and decompression. High-temperature conditions further dehydrated the lower crust with biotite and amphibole-dehydration melting and granulite formation coupled with 10% melt generation. Granulites can thus be envisaged as middle to lower crust dehydrated restites. Granulites were slowly (nearly isobarically) cooled, followed by late exhumation/retrograde rapid decompression and cooling, reflecting a two step P-T path. This retrograde evolution, coupled with water influx, chemically reequilibrated the rocks from granulite to amphibolite/greenschist facies, promoting the replacement of the plagioclase-quartz-garnet-hypersthene peak assemblage by quartz-biotite- K-feldspar symplectites.
Resumo:
The Ribeira belt in SE Brazil is a Neoproterozoic to Early Palaeozoic orogen, whose architecture and history is not yet fully understood. The depositional age of many of the sedimentary sequences in the Ribeira Belt remains unconstrained, and with debate concerning their depositional environment and tectonic setting. In this paper we present SHRIMP zircon U/Pb age constraints for one such problematic unit in the Ribeira Belt the lporanga Formation - and discuss the significance of this age with regards to the timing of Neoproterozoic glacial events in southeast Brazil. Using a felsic volcanic unit immediately under the lporanga Formation and granite cobbles from breccias in its basal parts a reconnaissance SHRIMP U/Pb zircon maximum depositional age of 580 Ma is assigned for the base of this unit. This age is marginally younger than the 625605 Ma ages for intrusions into the Lajeado and Ribeira subgroups, with which the lporanga Formation is in tectonic contact. This indicates that the Lajeado and Ribeira subgroups are not stratigraphically equivalent to the lporanga Formation, as thought previously by some workers. The maximum depositional age of 580 Ma also places a maximum time constraint on the tectonic juxtaposition of the lporanga Formation with other supracrustal units, and on the greenschist facies metamorphism and isoclinal folding that affected it. The potential glacial origin for the lporanga Formation, if correct, would place it in the late Ediacaran - provisionally equivalent to the Gaskiers glaciation. (c) 2007 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
Resumo:
A paleomagnetic study was carried out on the Late Jurassic Sarmiento Ophiolitic Complex (SOC) exposed in the Magallanes fold and thrust belt in the southern Patagonian Andes (southern Chile). This complex, mainly consisting of a thick succession of pillow-lavas, sheeted dikes and gabbros, is a seafloor remnant of the Late Jurassic to Early Cretaceous Rocas Verdes basin that developed along the south-western margin of South America. Stepwise thermal and alternating field demagnetization permitted the isolation of a post-folding characteristic remanence, apparently carried by fine grain (SD?) magnetite, both in the pillow-lavas and dikes. The mean ""in situ"" direction for the SOC is Dec: 286.9 degrees, Inc: -58.5 degrees, alpha-95: 6.9 degrees, N: 11 (sites). Rock magnetic properties, petrography and whole-rock K-Ar ages in the same rocks are interpreted as evidence of correlation between remanence acquisition and a greenschist facies metamorphic overprint that must have occurred during latest stages or after closure and tectonic inversion of the basin in the Late Cretaceous. The mean remanence direction is anomalous relative to the expected Late Cretaceous direction from stable South America. Particularly, a declination anomaly over 50 degrees is suggestively similar to paleomagnetically interpreted counter clockwise rotations found in thrust slices of the Jurassic El Quemado Fm. located over 100 km north of the study area in Argentina. Nevertheless, a significant ccw rotation of the whole SOC is difficult to reconcile with geologic evidence and paleogeographic models that suggest a narrow back-arc basin sub-parallel to the continental margin. A rigid-body 30 degrees westward tilting of the SOC block around a horizontal axis trending NNW, is considered a much simpler explanation, being consistent with geologic evidence. This may have occurred as a consequence of inverse reactivation of old normal faults, which limit both the SOC exposures and the Cordillera Sarmiento to the East. The age of tilting is unknown but it must postdate remanence acquisition in the Late Cretaceous. Two major orogenic events of the southern Patagonian Andes, in the Eocene (ca. 42 Ma) and Middle Miocene (ca. 12 Ma), respectively, could have caused the proposed tilting. (C) 2008 Elsevier B.V. All rights reserved.