963 resultados para Gravity Equations
Resumo:
Efforts are ongoing to decrease the noise of the GRACE gravity field models and hence to arrive closer to the GRACE baseline. The most significant error sources belong the untreated errors in the observation data and the imperfections in the background models. The recent study (Bandikova&Flury,2014) revealed that the current release of the star camera attitude data (SCA1B RL02) contain noise systematically higher than expected by about a factor 3-4. This is due to an incorrect implementation of the algorithms for quaternion combination in the JPL processing routines. Generating improved SCA data requires that valid data from both star camera heads are available which is not always the case because the Sun and Moon at times blind one camera. In the gravity field modeling, the attitude data are needed for the KBR antenna offset correction and to orient the non-gravitational linear accelerations sensed by the accelerometer. Hence any improvement in the SCA data is expected to be reflected in the gravity field models. In order to quantify the effect on the gravity field, we processed one month of observation data using two different approaches: the celestial mechanics approach (AIUB) and the variational equations approach (ITSG). We show that the noise in the KBR observations and the linear accelerations has effectively decreased. However, the effect on the gravity field on a global scale is hardly evident. We conclude that, at the current level of accuracy, the errors seen in the temporal gravity fields are dominated by errors coming from sources other than the attitude data.
The impact of common versus separate estimation of orbit parameters on GRACE gravity field solutions
Resumo:
Gravity field parameters are usually determined from observations of the GRACE satellite mission together with arc-specific parameters in a generalized orbit determination process. When separating the estimation of gravity field parameters from the determination of the satellites’ orbits, correlations between orbit parameters and gravity field coefficients are ignored and the latter parameters are biased towards the a priori force model. We are thus confronted with a kind of hidden regularization. To decipher the underlying mechanisms, the Celestial Mechanics Approach is complemented by tools to modify the impact of the pseudo-stochastic arc-specific parameters on the normal equations level and to efficiently generate ensembles of solutions. By introducing a time variable a priori model and solving for hourly pseudo-stochastic accelerations, a significant reduction of noisy striping in the monthly solutions can be achieved. Setting up more frequent pseudo-stochastic parameters results in a further reduction of the noise, but also in a notable damping of the observed geophysical signals. To quantify the effect of the a priori model on the monthly solutions, the process of fixing the orbit parameters is replaced by an equivalent introduction of special pseudo-observations, i.e., by explicit regularization. The contribution of the thereby introduced a priori information is determined by a contribution analysis. The presented mechanism is valid universally. It may be used to separate any subset of parameters by pseudo-observations of a special design and to quantify the damage imposed on the solution.
Resumo:
A feasibility study by Pail et al. (Can GOCE help to improve temporal gravity field estimates? In: Ouwehand L (ed) Proceedings of the 4th International GOCE User Workshop, ESA Publication SP-696, 2011b) shows that GOCE (‘Gravity field and steady-state Ocean Circulation Explorer’) satellite gravity gradiometer (SGG) data in combination with GPS derived orbit data (satellite-to-satellite tracking: SST-hl) can be used to stabilize and reduce the striping pattern of a bi-monthly GRACE (‘Gravity Recovery and Climate Experiment’) gravity field estimate. In this study several monthly (and bi-monthly) combinations of GRACE with GOCE SGG and GOCE SST-hl data on the basis of normal equations are investigated. Our aim is to assess the role of the gradients (solely) in the combination and whether already one month of GOCE observations provides sufficient data for having an impact in the combination. The estimation of clean and stable monthly GOCE SGG normal equations at high resolution ( > d/o 150) is found to be difficult, and the SGG component, solely, does not show significant added value to monthly and bi-monthly GRACE gravity fields. Comparisons of GRACE-only and combined monthly and bi-monthly solutions show that the striping pattern can only be reduced when using both GOCE observation types (SGG, SST-hl), and mainly between d/o 45 and 60.
Resumo:
This study is concerned with gravity field recovery from low-low satellite to satellite range rate data. An improvement over a coplanar mission is predicted in the errors associated with certain parts of the geopotential by the separation of the orbital planes of the two satellites. Using Hill's equations an analytical scheme to model the range rate residuals is developed. It is flexible enough to model equally well the residuals between pairs of satellites in the same orbital plane or whose planes are separated in right ascension. The possible benefits of such an orientation to gravity field recovery from range rate data can therefore be analysed, and this is done by means of an extensive error analysis. The results of this analysis show that for an optimal planar mission improvements can be made by separating the satellites in right ascension. Gravity field recoveries are performed in order to verify and gauge the limitations of the analytical model, and to support the results of the error analysis. Finally the possible problem of the differential decay rates of two satellites due to the diurnal bulge are evaluated.
Resumo:
AMS Subj. Classification: 83C15, 83C35
Resumo:
This research work analyses techniques for implementing a cell-centred finite-volume time-domain (ccFV-TD) computational methodology for the purpose of studying microwave heating. Various state-of-the-art spatial and temporal discretisation methods employed to solve Maxwell's equations on multidimensional structured grid networks are investigated, and the dispersive and dissipative errors inherent in those techniques examined. Both staggered and unstaggered grid approaches are considered. Upwind schemes using a Riemann solver and intensity vector splitting are studied and evaluated. Staggered and unstaggered Leapfrog and Runge-Kutta time integration methods are analysed in terms of phase and amplitude error to identify which method is the most accurate and efficient for simulating microwave heating processes. The implementation and migration of typical electromagnetic boundary conditions. from staggered in space to cell-centred approaches also is deliberated. In particular, an existing perfectly matched layer absorbing boundary methodology is adapted to formulate a new cell-centred boundary implementation for the ccFV-TD solvers. Finally for microwave heating purposes, a comparison of analytical and numerical results for standard case studies in rectangular waveguides allows the accuracy of the developed methods to be assessed.
Resumo:
Aijt-Sahalia (2002) introduced a method to estimate transitional probability densities of di®usion processes by means of Hermite expansions with coe±cients determined by means of Taylor series. This note describes a numerical procedure to ¯nd these coe±cients based on the calculation of moments. One advantage of this procedure is that it can be used e®ectively when the mathematical operations required to ¯nd closed-form expressions for these coe±cients are otherwise infeasible.
Resumo:
The solution of linear ordinary differential equations (ODEs) is commonly taught in first year undergraduate mathematics classrooms, but the understanding of the concept of a solution is not always grasped by students until much later. Recognising what it is to be a solution of a linear ODE and how to postulate such solutions, without resorting to tables of solutions, is an important skill for students to carry with them to advanced studies in mathematics. In this study we describe a teaching and learning strategy that replaces the traditional algorithmic, transmission presentation style for solving ODEs with a constructive, discovery based approach where students employ their existing skills as a framework for constructing the solutions of first and second order linear ODEs. We elaborate on how the strategy was implemented and discuss the resulting impact on a first year undergraduate class. Finally we propose further improvements to the strategy as well as suggesting other topics which could be taught in a similar manner.
Resumo:
In this paper, we consider the numerical solution of a fractional partial differential equation with Riesz space fractional derivatives (FPDE-RSFD) on a finite domain. Two types of FPDE-RSFD are considered: the Riesz fractional diffusion equation (RFDE) and the Riesz fractional advection–dispersion equation (RFADE). The RFDE is obtained from the standard diffusion equation by replacing the second-order space derivative with the Riesz fractional derivative of order αset membership, variant(1,2]. The RFADE is obtained from the standard advection–dispersion equation by replacing the first-order and second-order space derivatives with the Riesz fractional derivatives of order βset membership, variant(0,1) and of order αset membership, variant(1,2], respectively. Firstly, analytic solutions of both the RFDE and RFADE are derived. Secondly, three numerical methods are provided to deal with the Riesz space fractional derivatives, namely, the L1/L2-approximation method, the standard/shifted Grünwald method, and the matrix transform method (MTM). Thirdly, the RFDE and RFADE are transformed into a system of ordinary differential equations, which is then solved by the method of lines. Finally, numerical results are given, which demonstrate the effectiveness and convergence of the three numerical methods.