832 resultados para Graphics and Human Computer Interfaces


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The authors are concerned with the development of computer systems that are capable of using information from faces and voices to recognise people's emotions in real-life situations. The paper addresses the nature of the challenges that lie ahead, and provides an assessment of the progress that has been made in the areas of signal processing and analysis techniques (with regard to speech and face), and the psychological and linguistic analyses of emotion. Ongoing developmental work by the authors in each of these areas is described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a novel video-based multimodal biometric verification scheme using the subspace-based low-level feature fusion of face and speech is developed for specific speaker recognition for perceptual human--computer interaction (HCI). In the proposed scheme, human face is tracked and face pose is estimated to weight the detected facelike regions in successive frames, where ill-posed faces and false-positive detections are assigned with lower credit to enhance the accuracy. In the audio modality, mel-frequency cepstral coefficients are extracted for voice-based biometric verification. In the fusion step, features from both modalities are projected into nonlinear Laplacian Eigenmap subspace for multimodal speaker recognition and combined at low level. The proposed approach is tested on the video database of ten human subjects, and the results show that the proposed scheme can attain better accuracy in comparison with the conventional multimodal fusion using latent semantic analysis as well as the single-modality verifications. The experiment on MATLAB shows the potential of the proposed scheme to attain the real-time performance for perceptual HCI applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of the work reported here is to capture the commonsense knowledge of non-expert human contributors. Achieving this goal will enable more intelligent human-computer interfaces and pave the way for computers to reason about our world. In the domain of natural language processing, it will provide the world knowledge much needed for semantic processing of natural language. To acquire knowledge from contributors not trained in knowledge engineering, I take the following four steps: (i) develop a knowledge representation (KR) model for simple assertions in natural language, (ii) introduce cumulative analogy, a class of nearest-neighbor based analogical reasoning algorithms over this representation, (iii) argue that cumulative analogy is well suited for knowledge acquisition (KA) based on a theoretical analysis of effectiveness of KA with this approach, and (iv) test the KR model and the effectiveness of the cumulative analogy algorithms empirically. To investigate effectiveness of cumulative analogy for KA empirically, Learner, an open source system for KA by cumulative analogy has been implemented, deployed, and evaluated. (The site "1001 Questions," is available at http://teach-computers.org/learner.html). Learner acquires assertion-level knowledge by constructing shallow semantic analogies between a KA topic and its nearest neighbors and posing these analogies as natural language questions to human contributors. Suppose, for example, that based on the knowledge about "newspapers" already present in the knowledge base, Learner judges "newspaper" to be similar to "book" and "magazine." Further suppose that assertions "books contain information" and "magazines contain information" are also already in the knowledge base. Then Learner will use cumulative analogy from the similar topics to ask humans whether "newspapers contain information." Because similarity between topics is computed based on what is already known about them, Learner exhibits bootstrapping behavior --- the quality of its questions improves as it gathers more knowledge. By summing evidence for and against posing any given question, Learner also exhibits noise tolerance, limiting the effect of incorrect similarities. The KA power of shallow semantic analogy from nearest neighbors is one of the main findings of this thesis. I perform an analysis of commonsense knowledge collected by another research effort that did not rely on analogical reasoning and demonstrate that indeed there is sufficient amount of correlation in the knowledge base to motivate using cumulative analogy from nearest neighbors as a KA method. Empirically, evaluating the percentages of questions answered affirmatively, negatively and judged to be nonsensical in the cumulative analogy case compares favorably with the baseline, no-similarity case that relies on random objects rather than nearest neighbors. Of the questions generated by cumulative analogy, contributors answered 45% affirmatively, 28% negatively and marked 13% as nonsensical; in the control, no-similarity case 8% of questions were answered affirmatively, 60% negatively and 26% were marked as nonsensical.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

How do resource booms affect human capital accumulation? We exploit time and spatial variation generated by the commodity boom across local governments in Peru to measure the effect of natural resources on human capital formation. We explore the effect of both mining production and tax revenues on test scores, finding a substantial and statistically significant effect for the latter. Transfers to local governments from mining tax revenues are linked to an increase in math test scores of around 0.23 standard deviations. We find that the hiring of permanent teachers as well as the increases in parental employment and improvements in health outcomes of adults and children are plausible mechanisms for such large effect on learning. These findings suggest that redistributive policies could facilitate the accumulation of human capital in resource abundant developing countries as a way to avoid the natural resources curse.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the main challenges for developers of new human-computer interfaces is to provide a more natural way of interacting with computer systems, avoiding excessive use of hand and finger movements. In this way, also a valuable alternative communication pathway is provided to people suffering from motor disabilities. This paper describes the construction of a low cost eye tracker using a fixed head setup. Therefore a webcam, laptop and an infrared lighting source were used together with a simple frame to fix the head of the user. Furthermore, detailed information on the various image processing techniques used for filtering the centre of the pupil and different methods to calculate the point of gaze are discussed. An overall accuracy of 1.5 degrees was obtained while keeping the hardware cost of the device below 100 euros.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BCI systems require correct classification of signals interpreted from the brain for useful operation. To this end this paper investigates a method proposed in [1] to correctly classify a series of images presented to a group of subjects in [2]. We show that it is possible to use the proposed methods to correctly recognise the original stimuli presented to a subject from analysis of their EEG. Additionally we use a verification set to show that the trained classification method can be applied to a different set of data. We go on to investigate the issue of invariance in EEG signals. That is, the brain representation of similar stimuli is recognisable across different subjects. Finally we consider the usefulness of the methods investigated towards an improved BCI system and discuss how it could potentially lead to great improvements in the ease of use for the end user by offering an alternative, more intuitive control based mode of operation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract. Different types of mental activity are utilised as an input in Brain-Computer Interface (BCI) systems. One such activity type is based on Event-Related Potentials (ERPs). The characteristics of ERPs are not visible in single-trials, thus averaging over a number of trials is necessary before the signals become usable. An improvement in ERP-based BCI operation and system usability could be obtained if the use of single-trial ERP data was possible. The method of Independent Component Analysis (ICA) can be utilised to separate single-trial recordings of ERP data into components that correspond to ERP characteristics, background electroencephalogram (EEG) activity and other components with non- cerebral origin. Choice of specific components and their use to reconstruct “denoised” single-trial data could improve the signal quality, thus allowing the successful use of single-trial data without the need for averaging. This paper assesses single-trial ERP signals reconstructed using a selection of estimated components from the application of ICA on the raw ERP data. Signal improvement is measured using Contrast-To-Noise measures. It was found that such analysis improves the signal quality in all single-trials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Presents a method for model based bilateral control of master-slave arm with time delay between master and slave arms, where the system supports cooperative action between manual and automatic modes. The method realises efficiencies in master-slave arm control with the simplicities of a computer and the flexibility of a skilled human operator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a domain ontology, the FeelingTheMusic Ontology - FTMOntology. FTMOntology is designed to represent the complex domain of music and how it relates to other domains like mood, personality and physiology. This includes representing the main concepts and relations of music domain with each of the above-mentioned domains. The concepts and relations between music, mood, personality and physiology. The main contribution of this work is to model and relate these different domains in a consistent ontology. © 2011 Springer-Verlag.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Healthcare, Human Computer Interfaces (HCI), Security and Biometry are the most promising application scenario directly involved in the Body Area Networks (BANs) evolution. Both wearable devices and sensors directly integrated in garments envision a word in which each of us is supervised by an invisible assistant monitoring our health and daily-life activities. New opportunities are enabled because improvements in sensors miniaturization and transmission efficiency of the wireless protocols, that achieved the integration of high computational power aboard independent, energy-autonomous, small form factor devices. Application’s purposes are various: (I) data collection to achieve off-line knowledge discovery; (II) user notification of his/her activities or in case a danger occurs; (III) biofeedback rehabilitation; (IV) remote alarm activation in case the subject need assistance; (V) introduction of a more natural interaction with the surrounding computerized environment; (VI) users identification by physiological or behavioral characteristics. Telemedicine and mHealth [1] are two of the leading concepts directly related to healthcare. The capability to borne unobtrusiveness objects supports users’ autonomy. A new sense of freedom is shown to the user, not only supported by a psychological help but a real safety improvement. Furthermore, medical community aims the introduction of new devices to innovate patient treatments. In particular, the extension of the ambulatory analysis in the real life scenario by proving continuous acquisition. The wide diffusion of emerging wellness portable equipment extended the usability of wearable devices also for fitness and training by monitoring user performance on the working task. The learning of the right execution techniques related to work, sport, music can be supported by an electronic trainer furnishing the adequate aid. HCIs made real the concept of Ubiquitous, Pervasive Computing and Calm Technology introduced in the 1988 by Marc Weiser and John Seeley Brown. They promotes the creation of pervasive environments, enhancing the human experience. Context aware, adaptive and proactive environments serve and help people by becoming sensitive and reactive to their presence, since electronics is ubiquitous and deployed everywhere. In this thesis we pay attention to the integration of all the aspects involved in a BAN development. Starting from the choice of sensors we design the node, configure the radio network, implement real-time data analysis and provide a feedback to the user. We present algorithms to be implemented in wearable assistant for posture and gait analysis and to provide assistance on different walking conditions, preventing falls. Our aim, expressed by the idea to contribute at the development of a non proprietary solutions, driven us to integrate commercial and standard solutions in our devices. We use sensors available on the market and avoided to design specialized sensors in ASIC technologies. We employ standard radio protocol and open source projects when it was achieved. The specific contributions of the PhD research activities are presented and discussed in the following. • We have designed and build several wireless sensor node providing both sensing and actuator capability making the focus on the flexibility, small form factor and low power consumption. The key idea was to develop a simple and general purpose architecture for rapid analysis, prototyping and deployment of BAN solutions. Two different sensing units are integrated: kinematic (3D accelerometer and 3D gyroscopes) and kinetic (foot-floor contact pressure forces). Two kind of feedbacks were implemented: audio and vibrotactile. • Since the system built is a suitable platform for testing and measuring the features and the constraints of a sensor network (radio communication, network protocols, power consumption and autonomy), we made a comparison between Bluetooth and ZigBee performance in terms of throughput and energy efficiency. Test in the field evaluate the usability in the fall detection scenario. • To prove the flexibility of the architecture designed, we have implemented a wearable system for human posture rehabilitation. The application was developed in conjunction with biomedical engineers who provided the audio-algorithms to furnish a biofeedback to the user about his/her stability. • We explored off-line gait analysis of collected data, developing an algorithm to detect foot inclination in the sagittal plane, during walk. • In collaboration with the Wearable Lab – ETH, Zurich, we developed an algorithm to monitor the user during several walking condition where the user carry a load. The remainder of the thesis is organized as follows. Chapter I gives an overview about Body Area Networks (BANs), illustrating the relevant features of this technology and the key challenges still open. It concludes with a short list of the real solutions and prototypes proposed by academic research and manufacturers. The domain of the posture and gait analysis, the methodologies, and the technologies used to provide real-time feedback on detected events, are illustrated in Chapter II. The Chapter III and IV, respectively, shown BANs developed with the purpose to detect fall and monitor the gait taking advantage by two inertial measurement unit and baropodometric insoles. Chapter V reports an audio-biofeedback system to improve balance on the information provided by the use centre of mass. A walking assistant based on the KNN classifier to detect walking alteration on load carriage, is described in Chapter VI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the fact that photographic stimuli are used across experimental contexts with both human and nonhuman subjects, the nature of individuals' perceptions of these stimuli is still not well understood. In the present experiments, we tested whether three orangutans and 36 human children could use photographic information presented on a computer screen to solve a perceptually corresponding problem in the physical domain. Furthermore, we tested the cues that aided in this process by pitting featural information against spatial position in a series of probe trials. We found that many of the children and one orangutan were successfully able to use the information cross-dimensionally; however, the other two orangutans and almost a quarter of the children failed to acquire the task. Species differences emerged with respect to ease of task acquisition. More striking, however, were the differences in cues that participants used to solve the task: Whereas the orangutan used a spatial strategy, the majority of children used a feature one. Possible reasons for these differences are discussed from both evolutionary and developmental perspectives. The novel results found here underscore the need for further testing in this area to design appropriate experimental paradigms in future comparative research settings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES To find the best pairing of first and second reader at highest sensitivity for detecting lung nodules with CT at various dose levels. MATERIALS AND METHODS An anthropomorphic lung phantom and artificial lung nodules were used to simulate screening CT-examination at standard dose (100 mAs, 120 kVp) and 8 different low dose levels, using 120, 100 and 80 kVp combined with 100, 50 and 25 mAs. At each dose level 40 phantoms were randomly filled with 75 solid and 25 ground glass nodules (5-12 mm). Two radiologists and 3 different computer aided detection softwares (CAD) were paired to find the highest sensitivity. RESULTS Sensitivities at standard dose were 92%, 90%, 84%, 79% and 73% for reader 1, 2, CAD1, CAD2, CAD3, respectively. Combined sensitivity for human readers 1 and 2 improved to 97%, (p1=0.063, p2=0.016). Highest sensitivities--between 97% and 99.0%--were achieved by combining any radiologist with any CAD at any dose level. Combining any two CADs, sensitivities between 85% and 88% were significantly lower than for radiologists combined with CAD (p<0.03). CONCLUSIONS Combination of a human observer with any of the tested CAD systems provide optimal sensitivity for lung nodule detection even at reduced dose at 25 mAs/80 kVp.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New forms of natural interactions between human operators and UAVs (Unmanned Aerial Vehicle) are demanded by the military industry to achieve a better balance of the UAV control and the burden of the human operator. In this work, a human machine interface (HMI) based on a novel gesture recognition system using depth imagery is proposed for the control of UAVs. Hand gesture recognition based on depth imagery is a promising approach for HMIs because it is more intuitive, natural, and non-intrusive than other alternatives using complex controllers. The proposed system is based on a Support Vector Machine (SVM) classifier that uses spatio-temporal depth descriptors as input features. The designed descriptor is based on a variation of the Local Binary Pattern (LBP) technique to efficiently work with depth video sequences. Other major consideration is the especial hand sign language used for the UAV control. A tradeoff between the use of natural hand signs and the minimization of the inter-sign interference has been established. Promising results have been achieved in a depth based database of hand gestures especially developed for the validation of the proposed system.