905 resultados para Graphical representations
Resumo:
This article analyses the teacher strikes that took place in the state of Sao Paulo ( Brazil). These strikes produced new representations of the profession and gave a particular visibility to its interest aggregation processes. These same strikes appeared as major incentives for the organisation of teachers in Brazil. The October 1963 strike - about six months before the military coup of 1964 - was the first to mobilise the whole of the teaching profession of the Sao Paulo state: primary and secondary education, public and private schools were all involved. The two other strikes, organised by teachers in the public schools in 1978 and 1979, took place under the dictatorship. As such, they had a particular significance in the process of recovering civil liberties in the final stages of the military regime in the 1980s. This article is based on an analysis of the front-page covering of these teacher strikes by the two major journals of the state, O Estado de S. Paulo and Folha de S. Paulo. With Chartier`s concept collective representations in mind, this approach allows us to grasp how large-circulation journals diffuse images of the profession and its organisational configurations. These press pictures are analysed by dint of the analytical frame Roland Barthes advanced in the 1960s, i.e. by reading their denoted, connoted and symbolic messages.
Resumo:
This report describes recent updates to the custom-built data-acquisition hardware operated by the Center for Hypersonics. In 2006, an ISA-to-USB bridging card was developed as part of Luke Hillyard's final-year thesis. This card allows the hardware to be connected to any recent personal computers via a (USB or RS232) serial port and it provides a number of simple text-based commands for control of the hardware. A graphical user interface program was also updated to help the experimenter manage the data acquisition functions. Sampled data is stored in text files that have been compressed with the gzip for mat. To simplify the later archiving or transport of the data, all files specific to a shot are stored in a single directory. This includes a text file for the run description, the signal configuration file and the individual sampled-data files, one for each signal that was recorded.
Resumo:
P-representation techniques, which have been very successful in quantum optics and in other fields, are also useful for general bosonic quantum-dynamical many-body calculations such as Bose-Einstein condensation. We introduce a representation called the gauge P representation, which greatly widens the range of tractable problems. Our treatment results in an infinite set of possible time evolution equations, depending on arbitrary gauge functions that can be optimized for a given quantum system. In some cases, previous methods can give erroneous results, due to the usual assumption of vanishing boundary conditions being invalid for those particular systems. Solutions are given to this boundary-term problem for all the cases where it is known to occur: two-photon absorption and the single-mode laser. We also provide some brief guidelines on how to apply the stochastic gauge method to other systems in general, quantify the freedom of choice in the resulting equations, and make a comparison to related recent developments.
Resumo:
In the usual formulation of quantum mechanics, groups of automorphisms of quantum states have ray representations by unitary and antiunitary operators on complex Hilbert space, in accordance with Wigner's theorem. In the phase-space formulation, they have real, true unitary representations in the space of square-integrable functions on phase space. Each such phase-space representation is a Weyl–Wigner product of the corresponding Hilbert space representation with its contragredient, and these can be recovered by 'factorizing' the Weyl–Wigner product. However, not every real, unitary representation on phase space corresponds to a group of automorphisms, so not every such representation is in the form of a Weyl–Wigner product and can be factorized. The conditions under which this is possible are examined. Examples are presented.
A unified and complete construction of all finite dimensional irreducible representations of gl(2|2)
Resumo:
Representations of the non-semisimple superalgebra gl(2/2) in the standard basis are investigated by means of the vector coherent state method and boson-fermion realization. All finite-dimensional irreducible typical and atypical representations and lowest weight (indecomposable) Kac modules of gl(2/2) are constructed explicity through the explicit construction of all gl(2) circle plus gl(2) particle states (multiplets) in terms of boson and fermion creation operators in the super-Fock space. This gives a unified and complete treatment of finite-dimensional representations of gl(2/2) in explicit form, essential for the construction of primary fields of the corresponding current superalgebra at arbitrary level.
Resumo:
Simple techniques are presented for rearrangement of an infinite series in a systematic way such that the convergence of the resulting expression is accelerated. These procedures also allow calculation of required boundary derivatives. Several examples of conduction and diffusion-reaction problems illustrate the methods.
Resumo:
Two studies demonstrate dissociation between children's understanding of pictorial representations (photos and drawings) and mental representations (beliefs). In Study 1, 37 preschoolers were tested on false belief, appearance-reality, false photo, and false drawing tasks. The false picture tasks were significantly easier, and no correlation was found between children's performances on false belief and false picture tasks. Ln Study 2, 30 children who failed a false belief pretest were randomly assigned to 3 training groups: Belief (trained on false belief tasks), Picture (trained on false picture tasks), or Control (trained on number conservation tasks). Training was conducted in 2 sessions over the course of 2 weeks, tasks were presented and feedback was provided. All children were posttested on theory of mind tasks, false picture tasks, and a number conservation task. The posttest results showed differential patterns of performance, with the Belief group scoring highest on the theory of mind posttests, the Picture group scoring highest on the false picture posttests, and the Control group scoring highest on the number conservation posttest. Results are discussed with respect to competing models of theory of mind development.
Resumo:
We study the level-one irreducible highest weight representations of U-q[gl(1\1)] and associated q-vertex operators. We obtain the exchange relations satisfied by these vertex operators. The characters and supercharacters associated with these irreducible representations are calculated'. (C) 2000 Published by Elsevier Science B.V. All rights reserved.
Resumo:
This study shows the creation of a graphical representation after the application of a questionnaire to evaluate the indicative factors of a sustainable telemedicine and telehealth center in Sao Paulo, Brazil. We categorized the factors into seven domain areas: institutional, functional, economic-financial, renewal, academic-scientific, partnerships, and social welfare, which were plotted into a graphical representation. The developed graph was shown to be useful when used in the same institution over a long period and complemented with secondary information from publications, archives, and administrative documents to support the numerical indicators. Its use may contribute toward monitoring the factors that define telemedicine and telehealth center sustainability. When systematically applied, it may also be useful for identifying the specific characteristics of the telemedicine and telehealth center, to support its organizational development.
Resumo:
Computer assisted learning has an important role in the teaching of pharmacokinetics to health sciences students because it transfers the emphasis from the purely mathematical domain to an 'experiential' domain in which graphical and symbolic representations of actions and their consequences form the major focus for learning. Basic pharmacokinetic concepts can be taught by experimenting with the interplay between dose and dosage interval with drug absorption (e.g. absorption rate, bioavailability), drug distribution (e.g. volume of distribution, protein binding) and drug elimination (e.g. clearance) on drug concentrations using library ('canned') pharmacokinetic models. Such 'what if' approaches are found in calculator-simulators such as PharmaCalc, Practical Pharmacokinetics and PK Solutions. Others such as SAAM II, ModelMaker, and Stella represent the 'systems dynamics' genre, which requires the user to conceptualise a problem and formulate the model on-screen using symbols, icons, and directional arrows. The choice of software should be determined by the aims of the subject/course, the experience and background of the students in pharmacokinetics, and institutional factors including price and networking capabilities of the package(s). Enhanced learning may result if the computer teaching of pharmacokinetics is supported by tutorials, especially where the techniques are applied to solving problems in which the link with healthcare practices is clearly established.
Resumo:
Studies of delayed nonmatching-to-sample (DNMS) performance following lesions of the monkey cortex have revealed a critical circuit of brain regions involved in forming memories and retaining and retrieving stimulus representations. Using event-related functional magnetic resonance imaging (fMRI), we measured brain activity in 10 healthy human participants during performance of a trial-unique visual DNMS task using novel barcode stimuli. The event-related design enabled the identification of activity during the different phases of the task (encoding, retention, and retrieval). Several brain regions identified by monkey studies as being important for successful DNMS performance showed selective activity during the different phases, including the mediodorsal thalamic nucleus (encoding), ventrolateral prefrontal cortex (retention), and perirhinal cortex (retrieval). Regions showing sustained activity within trials included the ventromedial and dorsal prefrontal cortices and occipital cortex. The present study shows the utility of investigating performance on tasks derived from animal models to assist in the identification of brain regions involved in human recognition memory.