987 resultados para Graphene transfer


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A noncatalytic chemical vapor deposition mechanism is proposed, where high precursor concentration, long deposition time, high temperature, and flat substrate are needed to grow large-area nanocrystalline graphene using hydrocarbon pyrolysis. The graphene is scalable, uniform, and with controlled thickness. It can be deposited on virtually any nonmetallic substrate that withstands ∼1000 °C. For typical examples, graphene grown directly on quartz and sapphire shows transmittance and conductivity similar to exfoliated or metal-catalyzed graphene, as evidenced by transmission spectroscopy and transport measurements. Raman spectroscopy confirms the sp 2-C structure. The model and results demonstrate a promising transfer-free technique for transparent electrode production. © 2012 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metal-catalyst-free chemical vapor deposition (CVD) of large area uniform nanocrystalline graphene on oxidized silicon substrates is demonstrated. The material grows slowly, allowing for thickness control down to monolayer graphene. The as-grown thin films are continuous with no observable pinholes, and are smooth and uniform across whole wafers, as inspected by optical-, scanning electron-, and atomic force microscopy. The sp 2 hybridized carbon structure is confirmed by Raman spectroscopy. Room temperature electrical measurements show ohmic behavior (sheet resistance similar to exfoliated graphene) and up to 13 of electric-field effect. The Hall mobility is ∼40 cm 2/Vs, which is an order of magnitude higher than previously reported values for nanocrystalline graphene. Transmission electron microscopy, Raman spectroscopy, and transport measurements indicate a graphene crystalline domain size ∼10 nm. The absence of transfer to another substrate allows avoidance of wrinkles, holes, and etching residues which are usually detrimental to device performance. This work provides a broader perspective of graphene CVD and shows a viable route toward applications involving transparent electrodes. © 2012 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Graphene is used as the thinnest possible spacer between gold nanoparticles and a gold substrate. This creates a robust, repeatable, and stable sub-nanometre gap for massive plasmonic field enhancements. White light spectroscopy of single 80 nm gold nanoparticles reveals plasmonic coupling between the particle and its image within the gold substrate. While for a single graphene layer, spectral doublets from coupled dimer modes are observed shifted into the near infra-red, these disappear for increasing numbers of layers. These doublets arise from plasmonic charge transfer, allowing the direct optical measurement of out-of-plane conductivity in such layered systems. Gating the graphene can thus directly produce plasmon tuning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of transparent radio-frequency electronics has been limited, until recently, by the lack of suitable materials. Naturally thin and transparent graphene may lead to disruptive innovations in such applications. Here, we realize optically transparent broadband absorbers operating in the millimetre wave regime achieved by stacking graphene bearing quartz substrates on a ground plate. Broadband absorption is a result of mutually coupled Fabry-Perot resonators represented by each graphene-quartz substrate. An analytical model has been developed to predict the absorption performance and the angular dependence of the absorber. Using a repeated transfer-and-etch process, multilayer graphene was processed to control its surface resistivity. Millimetre wave reflectometer measurements of the stacked graphene-quartz absorbers demonstrated excellent broadband absorption of 90% with a 28% fractional bandwidth from 125-165 GHz. Our data suggests that the absorbers' operation can also be extended to microwave and low-terahertz bands with negligible loss in performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An electrochemiluminescence (ECL) sensor based on Ru(bpy)(3)(2+)-graphene-Nafion composite film was developed. The graphene sheet was produced by chemical conversion of graphite, and was characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM), and Raman spectroscopy. The introduction of conductive graphene into Nafion not only greatly facilitates the electron transfer of Ru(bpy)(3)(2+), but also dramatically improves the long-term stability of the sensor by inhibiting the migration of Ru(bpy)(3)(2+) into the electrochemically inactive hydrophobic region of Nafion. The ECL sensor gives a good linear range over 1 x 10(-7) to 1 x 10(-4) M with a detection limit of 50 nM towards the determination of tripropylamine (TPA), comparable to that obtained by Nafion-CNT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We first reported that polyvinylpyrrolidone-protected graphene was dispersed well in water and had good electrochemical reduction toward O-2 and H2O2. With glucose oxidase (GOD) as an enzyme model, we constructed a novel polyvinylpyrrolidone-proteeted graphene/polyethylenimine-ftmctionalized ionic liquid/GOD electrochemical biosensor, which achieved the direct electron transfer of GOD, maintained its bioactivity and showed potential application for the fabrication of novel glucose biosensors with linear glucose response up to 14 mM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the characterization and application of a chemically reduced graphene oxide modified glassy carbon (CR-GO/GC) electrode, a novel electrode system, for the preparation of electrochemical sensing and biosensing platform are proposed. Different kinds of important inorganic and organic electroactive compounds (i.e., probe molecule (potassium ferricyanide), free bases of DNA (guanine (G), adenine (A), thymine (T), and cytosine (C)), oxidase/dehydrogenase-related molecules (hydrogen peroxide (H2O2/beta-nicotinamide adenine dinucleotide (NADH)), neurotransmitters (dopamine (DA)), and other biological molecules (ascorbic acid (AA), uric acid (UA), and acetaminophen (APAP)) were employed to study their electrochemical responses at the CR-GO/GC electrode, which shows more favorable electron transfer kinetics than graphite modified glassy carbon (graphite/GC) and glassy carbon (GC) electrodes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Graphene is used as the thinnest possible spacer between gold nanoparticles and a gold substrate. This creates a robust, repeatable, and stable subnanometer gap for massive plasmonic field enhancements. White light spectroscopy of single 80 nm gold nanoparticles reveals plasmonic coupling between the particle and its image within the gold substrate. While for a single graphene layer, spectral doublets from coupled dimer modes are observed shifted into the near-infrared, these disappear for increasing numbers of layers. These doublets arise from charger-transfer-sensitive gap plasmons, allowing optical measurement to access out-of-plane conductivity in such layered systems. Gating the graphene can thus directly produce plasmon tuning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A tactful ionic-liquid (IL)-assisted approach to in situ synthesis of iron fluoride/graphene nanosheet (GNS) hybrid nanostructures is developed. To ensure uniform dispersion and tight anchoring of the iron fluoride on graphene, we employ an IL which serves not only as a green fluoride source for the crystallization of iron fluoride nanoparticles but also as a dispersant of GNSs. Owing to the electron transfer highways created between the nanoparticles and the GNSs, the iron fluoride/GNS hybrid cathodes exhibit a remarkable improvement in both capacity and rate performance (230 mAh g-1 at 0.1 C and 74 mAh g-1 at 40 C). The stable adhesion of iron fluoride nanoparticles on GNSs also introduces a significant improvement in long-term cyclic performance (115 mAh g-1 after 250 cycles even at 10 C). The superior electrochemical performance of these iron fluoride/GNS hybrids as lithium ion battery cathodes is ascribed to the robust structure of the hybrid and the synergies between iron fluoride nanoparticles and graphene. © 2013 American Chemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structural, electronic and magnetic properties of Fe and Ti atomic wires and the complete covering when adsorbed on graphene are presented through ab initio calculations based on density functional theory. The most stable configurations are investigated for Fe and Ti in different concentrations adsorbed on the graphene surface, and the corresponding binding energies are calculated. The results show a tendency of the Ti atoms to cover uniformly the graphene surface, whereas the Fe atoms form clusters. The adsorption of the transition metal on the graphene surface changes significantly the electronic density of states near the graphene Fermi region. In all arrangements studied, a charge transfer is observed from the adsorbed species to the graphene surface due to the high hybridizations between the systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gold nanoparticles (Au-NPs) were deposited on single layer graphene (SLG) and few layers graphene (FLG) by applying the gas aggregation technique, previously adapted to a 4-gun commercial magnetron sputtering system. The samples were supported on SiO2 (280 nm)/Si substrates, and the influence of the applied DC power and deposition times on the nanoparticle-graphene system was investigated by Confocal Raman Microscopy. Analysis of the G and 2D bands of the Raman spectra shows that the integrated intensity ratio (I-2D/I-G) was higher for SLG than for FLG. For the samples produced using a sputtering power of 30W, the intensity (peak height) of the G and 2D bands increased with the deposition time, whereas for those produced applying 60W the peak heights of the G and 2D bands decreased with the deposition time. This behaviour was ascribed to the formation of larger Au-NPs aggregates in the last case. A significant increase of the Full Width Half Maximum (FWHM) of the G band for SLG and FLG was also observed as a function of the DC power and deposition time. Surprisingly, the fine details of the Raman spectra revealed an unintentional doping of SLG and FLG accompanying the increase of size and aggregation of the Au-NPs. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Graphene, the thinnest two-dimensional material possible, is considered as a realistic candidate for the numerous applications in electronic, energy storage and conversion devices due to its unique properties, such as high optical transmittance, high conductivity, excellent chemical and thermal stability. However, the electronic and chemical properties of graphene are highly dependent on their preparation methods. Therefore, the development of novel chemical exfoliation process which aims at high yield synthesis of high quality graphene while maintaining good solution processability is of great concern. This thesis focuses on the solution production of high-quality graphene by wet-chemical exfoliation methods and addresses the applications of the chemically exfoliated graphene in organic electronics and energy storage devices.rnPlatinum is the most commonly used catalysts for fuel cells but they suffered from sluggish electron transfer kinetics. On the other hand, heteroatom doped graphene is known to enhance not only electrical conductivity but also long term operation stability. In this regard, a simple synthetic method is developed for the nitrogen doped graphene (NG) preparation. Moreover, iron (Fe) can be incorporated into the synthetic process. As-prepared NG with and without Fe shows excellent catalytic activity and stability compared to that of Pt based catalysts.rnHigh electrical conductivity is one of the most important requirements for the application of graphene in electronic devices. Therefore, for the fabrication of electrically conductive graphene films, a novel methane plasma assisted reduction of GO is developed. The high electrical conductivity of plasma reduced GO films revealed an excellent electrochemical performance in terms of high power and energy densities when used as an electrode in the micro-supercapacitors.rnAlthough, GO can be prepared in bulk scale, large amount of defect density and low electrical conductivity are major drawbacks. To overcome the intrinsic limitation of poor quality of GO and/or reduced GO, a novel protocol is extablished for mass production of high-quality graphene by means of electrochemical exfoliation of graphite. The prepared graphene shows high electrical conductivity, low defect density and good solution processability. Furthermore, when used as electrodes in organic field-effect transistors and/or in supercapacitors, the electrochemically exfoliated graphene shows excellent device performances. The low cost and environment friendly production of such high-quality graphene is of great importance for future generation electronics and energy storage devices. rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The refractive index and extinction coefficient of chemical vapour deposition grown graphene are determined by ellipsometry analysis. Graphene films were grown on copper substrates and transferred as both monolayers and bilayers onto SiO2/Si substrates by using standard manufacturing procedures. The chemical nature and thickness of residual debris formed after the transfer process were elucidated using photoelectron spectroscopy. The real layered structure so deduced has been used instead of the nominal one as the input in the ellipsometry analysis of monolayer and bilayer graphene, transferred onto both native and thermal silicon oxide. The effect of these contamination layers on the optical properties of the stacked structure is noticeable both in the visible and the ultraviolet spectral regions, thus masking the graphene optical response. Finally, the use of heat treatment under a nitrogen atmosphere of the graphene-based stacked structures, as a method to reduce the water content of the sample, and its effect on the optical response of both graphene and the residual debris layer are presented. The Lorentz-Drude model proposed for the optical response of graphene fits fairly well the experimental ellipsometric data for all the analysed graphene-based stacked structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An efficient three-dimensional (3D) hybrid material of nitrogen-doped graphene sheets (N-RGO) supporting molybdenum disulfide (MoS2) nanoparticles with high-performance electrocatalytic activity for hydrogen evolution reaction (HER) is fabricated by using a facile hydrothermal route. Comprehensive microscopic and spectroscopic characterizations confirm the resulting hybrid material possesses a 3D crumpled few-layered graphene network structure decorated with MoS2 nanoparticles. Electrochemical characterization analysis reveals that the resulting hybrid material exhibits efficient electrocatalytic activity toward HER under acidic conditions with a low onset potential of 112 mV and a small Tafel slope of 44 mV per decade. The enhanced mechanism of electrocatalytic activity has been investigated in detail by controlling the elemental composition, electrical conductance and surface morphology of the 3D hybrid as well as Density Functional Theory (DFT) calculations. This demonstrates that the abundance of exposed active sulfur edge sites in the MoS2 and nitrogen active functional moieties in N-RGO are synergistically responsible for the catalytic activity, whilst the distinguished and coherent interface in MoS 2 /N-RGO facilitates the electron transfer during electrocatalysis. Our study gives insights into the physical/chemical mechanism of enhanced HER performance in MoS2/N-RGO hybrids and illustrates how to design and construct a 3D hybrid to maximize the catalytic efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The focus of this work is to develop the knowledge of prediction of the physical and chemical properties of processed linear low density polyethylene (LLDPE)/graphene nanoplatelets composites. Composites made from LLDPE reinforced with 1, 2, 4, 6, 8, and 10 wt% grade C graphene nanoplatelets (C-GNP) were processed in a twin screw extruder with three different screw speeds and feeder speeds (50, 100, and 150 rpm). These applied conditions are used to optimize the following properties: thermal conductivity, crystallization temperature, degradation temperature, and tensile strength while prediction of these properties was done through artificial neural network (ANN). The three first properties increased with increase in both screw speed and C-GNP content. The tensile strength reached a maximum value at 4 wt% C-GNP and a speed of 150 rpm as this represented the optimum condition for the stress transfer through the amorphous chains of the matrix to the C-GNP. ANN can be confidently used as a tool to predict the above material properties before investing in development programs and actual manufacturing, thus significantly saving money, time, and effort.