953 resultados para Graph-Based Metrics
Resumo:
The authors take a broad view that ultimately Grid- or Web-services must be located via personalised, semantic-rich discovery processes. They argue that such processes must rely on the storage of arbitrary metadata about services that originates from both service providers and service users. Examples of such metadata are reliability metrics, quality of service data, or semantic service description markup. This paper presents UDDI-MT, an extension to the standard UDDI service directory approach that supports the storage of such metadata via a tunnelling technique that ties the metadata store to the original UDDI directory. They also discuss the use of a rich, graph-based RDF query language for syntactic queries on this data. Finally, they analyse the performance of each of these contributions in our implementation.
Resumo:
We take a broad view that ultimately Grid- or Web-services must be located via personalised, semantic-rich discovery processes. We argue that such processes must rely on the storage of arbitrary metadata about services that originates from both service providers and service users. Examples of such metadata are reliability metrics, quality of service data, or semantic service description markup. This paper presents UDDI-MT, an extension to the standard UDDI service directory approach that supports the storage of such metadata via a tunnelling technique that ties the metadata store to the original UDDI directory. We also discuss the use of a rich, graph-based RDF query language for syntactic queries on this data. Finally, we analyse the performance of each of these contributions in our implementation.
Resumo:
An important tool for the heart disease diagnosis is the analysis of electrocardiogram (ECG) signals, since the non-invasive nature and simplicity of the ECG exam. According to the application, ECG data analysis consists of steps such as preprocessing, segmentation, feature extraction and classification aiming to detect cardiac arrhythmias (i.e.; cardiac rhythm abnormalities). Aiming to made a fast and accurate cardiac arrhythmia signal classification process, we apply and analyze a recent and robust supervised graph-based pattern recognition technique, the optimum-path forest (OPF) classifier. To the best of our knowledge, it is the first time that OPF classifier is used to the ECG heartbeat signal classification task. We then compare the performance (in terms of training and testing time, accuracy, specificity, and sensitivity) of the OPF classifier to the ones of other three well-known expert system classifiers, i.e.; support vector machine (SVM), Bayesian and multilayer artificial neural network (MLP), using features extracted from six main approaches considered in literature for ECG arrhythmia analysis. In our experiments, we use the MIT-BIH Arrhythmia Database and the evaluation protocol recommended by The Association for the Advancement of Medical Instrumentation. A discussion on the obtained results shows that OPF classifier presents a robust performance, i.e.; there is no need for parameter setup, as well as a high accuracy at an extremely low computational cost. Moreover, in average, the OPF classifier yielded greater performance than the MLP and SVM classifiers in terms of classification time and accuracy, and to produce quite similar performance to the Bayesian classifier, showing to be a promising technique for ECG signal analysis. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
We investigate the problem of waveband switching (WBS) in a wavelength-division multiplexing (WDM) mesh network with dynamic traffic requests. To solve the WBS problem in a homogeneous dynamic WBS network, where every node is a multi-granular optical cross-connect (MG-OXC), we construct an auxiliary graph. Based on the auxiliary graph, we develop two heuristic on-line WBS algorithms with different grouping policies, namely the wavelength-first WBS algorithm based on the auxiliary graph (WFAUG) and the waveband-first WBS algorithm based on the auxiliary graph (BFAUG). Our results show that the WFAUG algorithm outperforms the BFAUG algorithm.
Resumo:
This book will serve as a foundation for a variety of useful applications of graph theory to computer vision, pattern recognition, and related areas. It covers a representative set of novel graph-theoretic methods for complex computer vision and pattern recognition tasks. The first part of the book presents the application of graph theory to low-level processing of digital images such as a new method for partitioning a given image into a hierarchy of homogeneous areas using graph pyramids, or a study of the relationship between graph theory and digital topology. Part II presents graph-theoretic learning algorithms for high-level computer vision and pattern recognition applications, including a survey of graph based methodologies for pattern recognition and computer vision, a presentation of a series of computationally efficient algorithms for testing graph isomorphism and related graph matching tasks in pattern recognition and a new graph distance measure to be used for solving graph matching problems. Finally, Part III provides detailed descriptions of several applications of graph-based methods to real-world pattern recognition tasks. It includes a critical review of the main graph-based and structural methods for fingerprint classification, a new method to visualize time series of graphs, and potential applications in computer network monitoring and abnormal event detection.
Resumo:
Software evolution, and particularly its growth, has been mainly studied at the file (also sometimes referred as module) level. In this paper we propose to move from the physical towards a level that includes semantic information by using functions or methods for measuring the evolution of a software system. We point out that use of functions-based metrics has many advantages over the use of files or lines of code. We demonstrate our approach with an empirical study of two Free/Open Source projects: a community-driven project, Apache, and a company-led project, Novell Evolution. We discovered that most functions never change; when they do their number of modifications is correlated with their size, and that very few authors who modify each; finally we show that the departure of a developer from a software project slows the evolution of the functions that she authored.
Resumo:
INTRODUCTION: The EVA (Endoscopic Video Analysis) tracking system a new tracking system for extracting motions of laparoscopic instruments based on non-obtrusive video tracking was developed. The feasibility of using EVA in laparoscopic settings has been tested in a box trainer setup. METHODS: EVA makes use of an algorithm that employs information of the laparoscopic instrument's shaft edges in the image, the instrument's insertion point, and the camera's optical centre to track the 3D position of the instrument tip. A validation study of EVA comprised a comparison of the measurements achieved with EVA and the TrEndo tracking system. To this end, 42 participants (16 novices, 22 residents, and 4 experts) were asked to perform a peg transfer task in a box trainer. Ten motion-based metrics were used to assess their performance. RESULTS: Construct validation of the EVA has been obtained for seven motion-based metrics. Concurrent validation revealed that there is a strong correlation between the results obtained by EVA and the TrEndo for metrics such as path length (p=0,97), average speed (p=0,94) or economy of volume (p=0,85), proving the viability of EVA. CONCLUSIONS: EVA has been successfully used in the training setup showing potential of endoscopic video analysis to assess laparoscopic psychomotor skills. The results encourage further implementation of video tracking in training setups and in image guided surgery.
Resumo:
Macroscopic brain networks have been widely described with the manifold of metrics available using graph theory. However, most analyses do not incorporate information about the physical position of network nodes. Here, we provide a multimodal macroscopic network characterization while considering the physical positions of nodes. To do so, we examined anatomical and functional macroscopic brain networks in a sample of twenty healthy subjects. Anatomical networks are obtained with a graph based tractography algorithm from diffusion-weighted magnetic resonance images (DW-MRI). Anatomical con- nections identified via DW-MRI provided probabilistic constraints for determining the connectedness of 90 dif- ferent brain areas. Functional networks are derived from temporal linear correlations between blood-oxygenation level-dependent signals derived from the same brain areas. Rentian Scaling analysis, a technique adapted from very- large-scale integration circuits analyses, shows that func- tional networks are more random and less optimized than the anatomical networks. We also provide a new metric that allows quantifying the global connectivity arrange- ments for both structural and functional networks. While the functional networks show a higher contribution of inter-hemispheric connections, the anatomical networks highest connections are identified in a dorsal?ventral arrangement. These results indicate that anatomical and functional networks present different connectivity organi- zations that can only be identified when the physical locations of the nodes are included in the analysis.
Resumo:
Assessing video quality is a complex task. While most pixel-based metrics do not present enough correlation between objective and subjective results, algorithms need to correspond to human perception when analyzing quality in a video sequence. For analyzing the perceived quality derived from concrete video artifacts in determined region of interest we present a novel methodology for generating test sequences which allow the analysis of impact of each individual distortion. Through results obtained after subjective assessment it is possible to create psychovisual models based on weighting pixels belonging to different regions of interest distributed by color, position, motion or content. Interesting results are obtained in subjective assessment which demonstrates the necessity of new metrics adapted to human visual system.