979 resultados para Gram positive bacterium


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation presented to obtain the PhD degree in Biology/Molecular Biology by Universidade Nova de Lisboa, Instituto de Tecnologia Química e Biológica

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D degree in Biology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D degree in Biology, Microbial Biology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RESUMO: Clostridium difficile é presentemente a principal causa de doença gastrointestinal associada à utilização de antibióticos em adultos. C. difficile é uma bactéria Gram-positiva, obrigatoriamente anaeróbica, capaz de formar endósporos. Tem-se verificado um aumento dos casos de doença associada a C. difficile com sintomas mais severos, elevadas taxas de morbilidade, mortalidade e recorrência, em parte, devido à emergência de estirpes mais virulentas, mas também devido à má gestão do uso de antibióticos. C. difficile produz duas toxinas, TcdA e TcdB, que são os principais fatores de virulência e responsáveis pelos sintomas da doença. Estas são codificadas a partir do Locus de Patogenicidade (PaLoc) que codifica ainda para um regulador positivo, TcdR, uma holina, TcdE, e um regulador negativo, TcdC. Os esporos resistentes ao oxigénio são essenciais para a transmissão do organismo e recorrência da doença. A expressão dos genes do PaLoc ocorre em células vegetativas, no final da fase de crescimento exponencial, e em células em esporulação. Neste trabalho construímos dois mutantes de eliminação em fase dos genes tcdR e tcdE. Mostrámos que a auto-regulação do gene tcdR não é significativa. No entanto, tcdR é sempre necessário para a expressão dos genes presentes no PaLoc. Trabalho anterior mostrou que, com a exceção de tcdC, os demais genes do PaLoc são expressos no pré-esporo. Mostrámos aqui que TcdA é detectada à superfície do esporo maduro e que a eliminação do tcdE não influencia a acumulação de TcdA no meio de cultura ou em associação às células ou ao esporo. Estas observações têm consequências para o nosso entendimento do processo infecioso: sugeremque o esporo possa ser também um veículo para a entrega da toxina nos estágios iniciais da infecção, que TcdA possa ser libertada durante a germinação do esporo, e que o esporo possa utilizar o mesmo receptor reconhecido por TcdA para a ligação à mucosa do cólon.---------------------------ABSTRACT: Clostridium difficile is currently the major cause of antibiotic-associated gastrointestinal diseases in adults. This is a Gram-positive bacterium, endospore-forming and an obligate anaerobe that colonizes the gastrointestinal tract. Recent years have seen a rise in C. difficile associated disease (CDAD) cases, associated with more severe disease symptoms, higher rates of morbidity, mortality and recurrence, which were mostly caused due to the emergence of “hypervirulent” strains but also due to changing patterns of antibiotics use. C. difficile produces two potent toxins, TcdA and TcdB, which are the main virulence factors and the responsible for the disease symptoms. These are codified from a Pathogenicity Locus (PaLoc), composed also by the positive regulator, TcdR, the holin-like protein, TcdE, and a negative regulator, TcdC. Besides the toxins, the oxygen-resistant spores are also essential for transmission of the organism through diarrhea; moreover, spores can accumulate in the environment or in the host, which will cause disease recurrence. The expression of the PaLoc genes occurs in vegetative cells, at the end of the exponential growth phase, and in sporulating cells. In this work, we constructed two in-frame deletion mutants of tcdR and tcdE. We showed that the positive auto regulation of tcdR is not significant. However, tcdR is always necessary for the expression of the PaLoc genes. A previous work showed that, except tcdC, all the PaLoc genes are expressed in the forespore. Here, we detected TcdA at the spore surface. Furthermore, we showed that the in-frame deletion of tcdE does not affect the accumulation of TcdA in the culture medium or in association with cells or spores. This data was important for us to conclude about the infeccious process: it suggests that the spore may be the vehicle for the delivery of TcdA in early stages of infection, that TcdA may be released during spores germination and that this spore may use the same receptor recognized by TcdA to bind to the colonic mucosa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A large group of low molecular weight natural compounds that exhibit antimicrobial activity has been isolated from animals and plants during the past two decades. Among them, peptides are the most widespread resulting in a new generation of antimicrobial agents with higher specific activity. In the present study we have developed a new strategy to obtain antimicrobial wound-dressings based on the incorporation of antimicrobial peptides into polyelectrolyte multilayer films built by the alternate deposition of polycation (chitosan) and polyanion (alginic acid sodium salt) over cotton gauzes. Energy dispersive X ray microanalysis technique was used to determine if antimicrobial peptides penetrated within the films. FTIR analysis was performed to assess the chemical linkages, and antimicrobial assays were performed with two strains: Staphylococcus aureus (Gram-positive bacterium) and Klebsiella pneumonia (Gram-negative bacterium). Results showed that all antimicrobial peptides used in this work have provided a higher antimicrobial effect (in the range of 4 log–6 log reduction) for both microorganisms, in comparison with the controls, and are non-cytotoxic to normal human dermal fibroblasts at the concentrations tested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[Excerpt] Corynebacterium glutamicum is a facultative anaerobic, gram-positive bacterium with a GRAS status that grows fast and achieves high cell densities. C. glutamicum is commonly used in amino acids production, and is also able to convert sugars in organic acids (OA) and alcohols in specific conditions: anaerobic and limited-oxygen environments. In these conditions, the carbon metabolism is modified, namely the flux shifts from the pentose phosphate pathway to glycolysis and the TCA cycle flux decreases and consequently bacterial growth is strongly affected [1,2]. (...)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The anaerobic Gram-positive bacterium Propionibacterium avidum is a common inhabitant of the skin with low pathogenicity. We report a case of P. avidum sacroilitis, psoas abscess and osteomyelitis in a 67-year-old male who had recently undergone surgical repair of an inguinal hernia. The organism was recovered from blood cultures, a bone biopsy specimen and specimens from the abscess. The spectrum of bone and joint infections caused by Propionibacterium is discussed. Infection by Propionibacterium spp. should be considered in patients with bone and joint infections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Streptococcus suis is an important pig pathogen but it is also zoonotic, i.e. capable of causing diseases in humans. Human S. suis infections are quite uncommon but potentially life-threatening and the pathogen is an emerging public health concern. This Gram-positive bacterium possesses a galabiose-specific (Galalpha1−4Gal) adhesion activity, which has been studied for over 20 years. P-fimbriated Escherichia coli−bacteria also possess a similar adhesin activity targeting the same disaccharide. The galabiose-specific adhesin of S. suis was identified by an affinity proteomics method. No function of the protein identified was formerly known and it was designated streptococcal adhesin P (SadP). The peptide sequence of SadP contains an LPXTG-motif and the protein was proven to be cell wall−anchored. SadP may be multimeric since in SDS-PAGE gel it formed a protein ladder starting from about 200 kDa. The identification was confirmed by producing knockout strains lacking functional adhesin, which had lost their ability to bind to galabiose. The adhesin gene was cloned in a bacterial expression host and properties of the recombinant adhesin were studied. The galabiose-binding properties of the recombinant protein were found to be consistent with previous results obtained studying whole bacterial cells. A live-bacteria application of surface plasmon resonance was set up, and various carbohydrate inhibitors of the galabiose-specific adhesins were studied with this assay. The potencies of the inhibitors were highly dependent on multivalency. Compared with P-fimbriated E. coli, lower concentrations of galabiose derivatives were needed to inhibit the adhesion of S. suis. Multivalent inhibitors of S. suis adhesion were found to be effective at low nanomolar concentrations. To specifically detect galabiose adhesin−expressing S. suis bacteria, a technique utilising magnetic glycoparticles and an ATP bioluminescence bacterial detection system was also developed. The identification and characterisation of the SadP adhesin give valuable information on the adhesion mechanisms of S. suis, and the results of this study may be helpful for the development of novel inhibitors and specific detection methods of this pathogen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A lectin isolated from the red alga Solieria filiformis was evaluated for its effect on the growth of 8 gram-negative and 3 gram-positive bacteria cultivated in liquid medium (three independent experiments/bacterium). The lectin (500 µg/mL) stimulated the growth of the gram-positive species Bacillus cereus and inhibited the growth of the gram-negative species Serratia marcescens, Salmonella typhi, Klebsiella pneumoniae, Enterobacter aerogenes, Proteus sp, and Pseudomonas aeruginosa at 1000 µg/mL but the lectin (10-1000 µg/mL) had no effect on the growth of the gram-positive bacteria Staphylococcus aureus and B. subtilis, or on the gram-negative bacteria Escherichia coli and Salmonella typhimurium. The purified lectin significantly reduced the cell density of gram-negative bacteria, although no changes in growth phases (log, exponential and of decline) were observed. It is possible that the interaction of S. filiformis lectin with the cell surface receptors of gram-negative bacteria promotes alterations in the flow of nutrients, which would explain the bacteriostatic effect. Growth stimulation of the gram-positive bacterium B. cereus was more marked in the presence of the lectin at a concentration of 1000 µg/mL. The stimulation of the growth of B. cereus was not observed when the lectin was previously incubated with mannan (125 µg/mL), its hapten. Thus, we suggest the involvement of the binding site of the lectin in this effect. The present study reports the first data on the inhibition and stimulation of pathogenic bacterial cells by marine alga lectins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Streptococcus mutans is a Gram-positive bacterium present in the oral cavity, and is considered to be one of the leading causes of dental caries. S. mutans has a glnK gene, which codes for a PII-like protein that is possibly involved in the integration of carbon, nitrogen and energy metabolism in several organisms. To characterize the GlnK protein of S. mutans, the glnK gene was amplified by PCR, and cloned into the expression vectors pET29a(+) and pET28b(+). The native GlnK-Sm was purified by anion exchange (Q-Sepharose) and affinity (Hi-Trap Heparin) chromatography. The GlnK-His-Sm protein was purified using a Hi-Trap Chelating-Ni2+ column. The molecular mass of the GlnK-His-Sm proteins was 85 kDa as determined by gel filtration, indicating that this protein is a hexamer in solution. The GlnK-His-Sm protein is not uridylylated by the Escherichia coli GlnD protein. The activities of the GlnK-Sm and GlnK-His-Sm proteins were assayed in E. coli constitutively expressing the Klebsiella pneumoniae nifLA operon. In K. pneumoniae, NifL inhibits NifA activity in the presence of high ammonium levels and the GlnK protein is required to reduce the inhibition of NifL in the presence of low ammonium levels. The GlnK-Sm protein was unable to reduce NifL inhibition of NifA protein. Surprisingly, the GlnK-His-Sm protein was able to partially reduce NifL inhibition of the NifA protein under nitrogen-limiting conditions, in a manner similar to the GlnK protein of E. coli. These results suggested that S. mutans GlnK is functionally different from E. coli PII proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le système de recombinaison Xer est impliqué dans la monomerisation des réplicons bactériens, comme les plasmides et les chromosomes, dans une grande variété de bactéries. Ce système est un système de recombinaison site-spécifique composé de deux tyrosine recombinases, soit XerC et XerD. Ils agissent ensemble afin de convertir les chromosomes dimériques en monomères en agissant à un site spécifique près du terminus de la réplication, appelé le site dif. Les gènes Xer et leur site d’action sont identifiés dans plusieurs bactéries gram positives et gram négatives. Staphylococcus aureus représente une bactérie gram positive qui contient un système XerCD/dif. Elle est impliqué dans plusieurs maladies humaines, tels que des infections cutanées, des gastroentérites, et le syndrome de choc toxique, pour en nommer quelques unes. Bien que les gènes codant les protéines XerC et XerD ont été identifiés, il y a beaucoup d’inconnu sur leur mode d’action au site dif. Des mutations dans XerC ont été obtenues, mais aucune dans XerD, suggérant que ce gène pourrait être essentiel pour cet organisme. Les études présentées dans ce mémoire ont permis de commencer à mieux caractériser XerD de S. aureus, en séquençant le gène et en faisant des tests de liaison à l’ADN. Elles ont montré que la recombinase XerD se lie au site dif d’Eschericia coli seul et de façon coopérative avec la recombinase XerC d’E. coli. XerD de S. aureus est, aussi, efficace dans la complémentation de XerD muté d’E. coli dans la réaction de recombinaison chromosomique. Cependant, elle ne démontre pas cette même capacité de complémentation lors de la recombinaison plasmidique aux sites cer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Probiotics are live microbial feed additions that improve human or animal health. Their activities are towards improving the composition of the gastrointestinal microbiota in a manner that reduces the risk of disorder. In some cases, probiotics are also used therapeutically. Most probiotics use lactobacilli or bifidobacteria as the main constituents. These produce lactic acid as well as other anti-pathogenic attributes. Traditionally, probiotics are incorporated in dairy products (yoghurts or fermented drinks) or in lyophilised form. Because of stability and viability factors, heated products are not usually a target for probiotic use. This is because they are temperature sensitive. However, a spore-forming genus would have the ability to overcome this limitation. Here, we discuss evidence for the spore-forming Gram-positive bacterium Bacillus coagulans as a probiotic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chemical composition of the essential oil of Rollinia sericea (R.E.Fr.) R.E.Fr. leaves was determined by GC and GC/MS analysis. The analysis revealed the presence mainly of sesquiterpenes: beta-elemene (10%), beta-caryophyllene (10.0%), bicyclogermacrene (9.1%), germacrene-D (8.2%), bicycloelemene (6.2%) and (Z)-nerolidol (5.3%). Rollinia sericea oil was able to inhibit the growth of both fungi Aspergillus niger (16404) and Candida albicans (ATCC 10231) as well as the Gram-positive bacterium Staphyloccocus aureus (ATCC 6538) but it was inactive against the Gram-negative bacteria Escherichia coli (ATCC 8739) and Pseudomonas aeruginosa (ATCC 9027).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chemical composition and the antimicrobial activity of the essential oil from Croton heterocalyx leaves were evaluated. The oil which was analyzed by GC and GUMS was found to contain germacrene D (12.5%), bicyclogermacrene (11.2%), delta-elemene (9.2%) beta-elemene (8.2%), spathulenol (6.9%), linalool (5.4%) and 1,8-cineole (3.7%) its major components. Croton. heterocalyx oil displayed a high inhibitory activity against the fungi Aspergillus niger (16404) and Candida albicans (ATCC 10231.) as well its the Gram-positive bacterium Staphylococcus aureus (ATCC 6538), hut a very weak activity was observed for the Gram-negative bacteria Escherichia coli (ATCC 8739) and Pseudomonas aeruginosa (ATCC 9027).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cold atmospheric plasma treatment of microorganisms and living tissues has become a popular topic in modern plasma physics and in medical science. The plasma is capable of bacterial inactivation and noninflammatory tissue modification, which makes it an attractive tool for treatment of skin diseases, open injuries and dental caries. Because of their enhanced plasma chemistry, Dielectric Barrier Discharges (DBDs) have been widely investigated for some emerging applications such as biological and chemical decontamination of media at ambient conditions. Despite the high breakdown voltage in air at atmospheric pressure, the average current of DBD discharges is low. Therefore, a DBD can be applied in direct contact with biological objects without causing any damage. In this work a 60 Hz DBD reactor, which generates cold atmospheric plasma inside Petri dishes with bacterial culture, is investigated. Samples of Staphylococcus aureus, a Gram-positive bacterium and Escherichia coil a Gram-negative bacterium were selected for this study. The bacterial suspensions were evenly spread on agar media planted in Petri dishes. The reactor electrodes were placed outside the Petri dish, thus eliminating the risk of samples microbial contamination. The covered Petri dish with agar medium in it serves as dielectric barrier during the treatment. The plasma processing was conducted at same discharge power (similar to 1.0 W) with different exposure time. Sterilization of E. coil and S. aureus was achieved for less than 20 min. Plasma induced structural damages of bacteria were investigated by Scanning Electron Microscopy. (C) 2010 Elsevier B.V. All rights reserved.