920 resultados para Grain Boundaries


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We explore the statistical properties of grain boundaries in the vortex polycrystalline phase of type-II superconductors. Treating grain boundaries as arrays of dislocations interacting through linear elasticity, we show that self-interaction of a deformed grain boundary is equivalent to a nonlocal long-range surface tension. This affects the pinning properties of grain boundaries, which are found to be less rough than isolated dislocations. The presence of grain boundaries has an important effect on the transport properties of type-II superconductors as we show by numerical simulations: our results indicate that the critical current is higher for a vortex polycrystal than for a regular vortex lattice. Finally, we discuss the possible role of grain boundaries in vortex lattice melting. Through a phenomenological theory we show that melting can be preceded by an intermediate polycrystalline phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dielectric properties of BaTiO(3) ferroelectric ceramics were studied over wide frequency and temperature ranges. The materials showed complex dielectric behaviors, which included an anomalous increase of permittivity towards higher temperatures. Important, this property tended however to saturate to values that varied with grain-boundary density. Application of impedance spectroscopy and consideration of the series-layer model allowed a coherent discussion of these and other interesting observations from this work. In particular, analysis of the relationship existing in this model between macroscopic and microscopic dielectric properties rendered possible to account for grain vs. grain-boundary dielectric behaviors, in harmony with microstructure features, and to know the dielectric anomaly strength to be in fact expected from grain boundaries in such polycrystalline materials. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SnO2-based varistors are strong candidates to replace the ZnO-based varistors due to ordering fewer additives to improve its electrical behavior as well as by showing similar nonlinear characteristics of ZnO varistors. In this work, SnO2-nanoparticles based-varistors with addition of 1.0 %mol of ZnO and 0.05 %mol of Nb2O5 were synthesized by chemical route. SnO2.ZnO.Nb2O5-films with 5 μm of thickness were obtained by electrophoretic deposition (EPD) of the nanoparticles on Si/Pt substrate from alcoholic suspension of SnO2-based powder. The sintering step was carried out in a microwave oven at 1000 °C for 40 minutes. Then, Cr3+ ions were deposited on the films surface by EPD after the sintering step. Each sample was submitted to different thermal treatments to improve the varistor behavior by diffusion of ions in the samples. The films showed a nonlinear coefficient (α) greater than 9, breakdown voltage (VR) around 60 V, low leakage current (IF ≈ 10-6 A), height potential barrier above 0.5 eV and grain boundary resistivity upward of 107 Ω.cm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research reported in this dissertation investigates the impact of grain boundaries, film interface, and crystallographic orientation on the ionic conductivity of thin film Gd-doped CeO2 (GDC). Chapter 2 of this work addresses claims in the literature that submicron grain boundaries have the potential to dramatically increase the ionic conductivity of GDC films. Unambiguous testing of this claim requires directly comparing the ionic conductivity of single-crystal GDC films to films that are identical except for the presence of submicron grain boundaries. In this work techniques have been developed to grow GDC films by RF magnetron sputtering from a GDC target on single crystal r plane sapphire substrates. These techniques allow the growth of films that are single crystals or polycrystalline with 80 nm diameter grains. The ionic conductivities of these films have been measured and the data shows that the ionic conductivity of single crystal GDC is greater than that of the polycrystalline films by more than a factor of 4 over the 400-700°C temperature range. Chapter 3 of this work investigates the ionic conductivity of surface and interface regions of thin film Gd-doped CeO2. In this study, single crystal GDC films have been grown to thicknesses varying from 20 to 500 nm and their conductivities have been measured in the 500-700°C temperature range. Decreasing conductivity with decreasing film thickness was observed. Analysis of the conductivity data is consistent with the presence of an approximately 50 nm layer of less conductive material in every film. This study concludes that the surface and interface regions of thin film GDC are less conductive than the bulk single crystal regions, rather than being highly conductive paths. Chapter 4 of this work investigates the ionic conductivity of thin film Gd-doped CeO2 (GDC) as a function of crystallographic orientation. A theoretical expression has been developed for the ionic conductivity of the [100] and [110] directions in single crystal GDC. This relationship is compared to experimental data collected from a single crystal GDC film. The film was grown to a thickness of _300 nm and its conductivity measured along the [100] and [110] orientations in the 500-700°C temperature range. The experimental data shows no statistically significant difference in the conductivities of the [100] and [110] directions in single crystal GDC. This result agrees with the theoretical model which predicts no difference between the conductivities of the two directions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Steady spatial self-organization of three-dimensional chemical reaction-diffusion systems is discussed with the emphasis put on the possible defects that may alter the Turing patterns. It is shown that one of the stable defects of a three-dimensional lamellar Turing structure is a twist grain boundary embedding a Scherk minimal surface.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The microstructure of an artificial grain boundary in an YBa2Cu3O7-δ (YBCO) thin film grown on a (100)(110), [001]-tilt yttria-stabilized-zirconia (YSZ) bicrystal substrate has been studied using transmission electron microscopy (TEM). The orientation relationship between the YBCO film and the YSZ substrate was [001]YBCO∥[001]YSZ and [110]YBCO∥[100]YSZ for each half of the bicrystal film. However, the exact boundary geometry of the bicrystal substrate was not transferred to the film. The substrate boundary was straight while the film boundary was wavy. In several cases there was bending of the lattice confined within a distance of a few basal-plane lattice spacings from the boundary plane and microfaceting. No intergranular secondary phase was observed but about 25% of the boundary was covered by c-axis-tilted YBCO grains and a-axis-oriented grains, both of which were typically adjacent to CuO grains or surrounded by a thin Cu-rich amorphous layer.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Engineered grain boundary Josephson junctions in YBaCuO were formed on bicrystal Y-ZrO2 substrates. Laser deposited films were patterned into micron size microbridges. The authors obsd. a pronounced correlation between superconducting transport properties of grain boundary junctions and the misorientation angle θ between the two halves of the bicrystal. The crit. Josephson current Ic decreased about four orders of magnitude as θ was increased from 0 to 45 degrees. Clear microwave and magnetic field responses were obsd. at 77 K. At this temp., crit. current times normal resistance products, IcRn, of up to 1 mV were measured for low angle grain boundaries, and Shapiro steps were obsd. up to that voltage. DC SQUIDs were fabricated, and best performance at 77 K was obtained for θ = 32° with a 4-μm strip width. To utilize the higher IcRn value of a lower θ, submicron junctions have to be developed. [on SciFinder(R)]

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An attractive microstructural possibility for enhancing the ductility of high-strength nanocrystals is to develop a bimodal grain-size distribution, in which the fine grains provide strength, and the coarser grains enable strain hardening. Annealing of nanocrystalline Ni over a range of temperatures and times led to microstructures with varying volume fractions of coarse grains and a change in texture. Tensile tests revealed a drastic reduction in ductility with increasing volume fraction of coarse grains. The reduction in ductility may be related to the segregation of sulphur to grain boundaries.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The grain size dependence of the yield stress in hot rolled 99.87 pct magnesium sheets and rods was measured in the temperature range 77 K to 420 K. Hot rolling produced strong basal textures and, for a given grain size, the hot rolled material has a higher strength than extruded material. The yield strength-grain size relation in the above temperature range follows the Hall-Petch equation, and the temperature dependencies of the Hall-Petch constants σ0 and k are in support of the theory of Armstrong for hcp metals that the intercept σ0 is related to the critical resolved shear stress (CRSS) for basal slip (easy slip) and the slope k is related to the CRSS for prismatic slip (difficult slip) occurring near the grain boundaries. In the hot rolled magnesium, σ0 is larger and k is smaller than in extruded material, observations which are shown to result from strong unfavorable basal and favorable 1010 textures, respectively. Texture affects the Hall-Petch constants through its effect on the orientation factors relating them to the CRSS for the individual slip systems controlling them.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Grain misorientation was studied in relation to the nearest neighbor's mutual distance using electron back-scattered diffraction measurements. The misorientation correlation function was defined as the probability density for the occurrence of a certain misorientation between pairs of grains separated by a certain distance. Scale-invariant spatial correlation between neighbor grains was manifested by a power law dependence of the preferred misorientation vs. inter-granular distance in various materials after diverse strain paths. The obtained negative scaling exponents were in the range of -2 +/- 0.3 for high-angle grain boundaries. The exponent decreased in the presence of low-angle grain boundaries or dynamic recrystallization, indicating faster decay of correlations. The correlations vanished in annealed materials. The results were interpreted in terms of lattice incompatibility and continuity conditions at the interface between neighboring grains. Grain-size effects on texture development, as well as the implications of such spatial correlations on texture modeling, were discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A novel sintering additive based on LiNO3 was used to overcome the drawbacks of poor sinterability and low grain boundary conductivity in BaZr0.8Y0.2O3-δ (BZY20) protonic conductors. The Li-additive totally evaporated during the sintering process at 1600°C for 6 h, which led to highly dense BZY20 pellets (96.5% of the theoretical value). The proton conductivity values of BZY20 with Li sintering-aid were significantly larger than the values reported for BZY sintered with other metal oxides, due to the fast proton transport in the "clean" grain boundaries and grain interior. The total conductivity of BZY20-Li in wet Ar was 4.45 × 10-3 S cm-1 at 600°C. Based on the improved sinterability, anode-supported fuel cells with 25 μm-thick BZY20-Li electrolyte membranes were fabricated by a co-firing technique. The peak power density obtained at 700°C for a BZY-Ni/BZY20-Li/La0.6Sr0.4Co0.2Fe 0.8O3-δ (LSCF)-BZY cell was 53 mW cm-2, which is significantly larger than the values reported for fuel cells using electrolytes made of BZY sintered with the addition of ZnO and CuO, confirming the advantage of using Li as a sintering aid.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This communication describes the voltage‐current characteristics in the breakdown region of p‐n junctions made on polycrystalline silicon of large grain size. The observed soft breakdown characteristics have been explained by taking into account the effect of curvature of the junction near the grain boundaries.