921 resultados para Gordon Rule
Resumo:
Several websites utilise a rule-base recommendation system, which generates choices based on a series of questionnaires, for recommending products to users. This approach has a high risk of customer attrition and the bottleneck is the questionnaire set. If the questioning process is too long, complex or tedious; users are most likely to quit the questionnaire before a product is recommended to them. If the questioning process is short; the user intensions cannot be gathered. The commonly used feature selection methods do not provide a satisfactory solution. We propose a novel process combining clustering, decisions tree and association rule mining for a group-oriented question reduction process. The question set is reduced according to common properties that are shared by a specific group of users. When applied on a real-world website, the proposed combined method outperforms the methods where the reduction of question is done only by using association rule mining or only by observing distribution within the group.
Resumo:
Commercial legal expert systems are invariably rule based. Such systems are poor at dealing with open texture and the argumentation inherent in law. To overcome these problems we suggest supplementing rule based legal expert systems with case based reasoning or neural networks. Both case based reasoners and neural networks use cases-but in very different ways. We discuss these differences at length. In particular we examine the role of explanation in existing expert systems methodologies. Because neural networks provide poor explanation facilities, we consider the use of Toulmin argument structures to support explanation (S. Toulmin, 1958). We illustrate our ideas with regard to a number of systems built by the authors
Resumo:
This paper presents a novel framework to further advance the recent trend of using query decomposition and high-order term relationships in query language modeling, which takes into account terms implicitly associated with different subsets of query terms. Existing approaches, most remarkably the language model based on the Information Flow method are however unable to capture multiple levels of associations and also suffer from a high computational overhead. In this paper, we propose to compute association rules from pseudo feedback documents that are segmented into variable length chunks via multiple sliding windows of different sizes. Extensive experiments have been conducted on various TREC collections and our approach significantly outperforms a baseline Query Likelihood language model, the Relevance Model and the Information Flow model.
Resumo:
The statutory arrangements for the management of natural resources in Australia confer powers of decision-making upon government agencies and, at the same time, restrict how these powers are to be exercised by reference either to stated criteria or in some instances to the public interest. These restrictions perform different functions according to their structure, form and language: for example they may be in the form of jurisdictional, deliberative or purposive rules. This article reviews how the offshore resources legislation of the Commonwealth and some examples of the onshore resources legislation of Queensland address the functions performed by the public interest in determining whether there is compliance with the principle of the rule of law.
Resumo:
This thesis presents an empirical study of the effects of topology on cellular automata rule spaces. The classical definition of a cellular automaton is restricted to that of a regular lattice, often with periodic boundary conditions. This definition is extended to allow for arbitrary topologies. The dynamics of cellular automata within the triangular tessellation were analysed when transformed to 2-manifolds of topological genus 0, genus 1 and genus 2. Cellular automata dynamics were analysed from a statistical mechanics perspective. The sample sizes required to obtain accurate entropy calculations were determined by an entropy error analysis which observed the error in the computed entropy against increasing sample sizes. Each cellular automata rule space was sampled repeatedly and the selected cellular automata were simulated over many thousands of trials for each topology. This resulted in an entropy distribution for each rule space. The computed entropy distributions are indicative of the cellular automata dynamical class distribution. Through the comparison of these dynamical class distributions using the E-statistic, it was identified that such topological changes cause these distributions to alter. This is a significant result which implies that both global structure and local dynamics play a important role in defining long term behaviour of cellular automata.
Resumo:
This series of research vignettes is aimed at sharing current and interesting research findings from international entrepreneurship researchers. In this vignette, Dr. Martin Obschonka, considers the relationship between entrepreneurship and rule-breaking.
Resumo:
Train pedestrian collisions are the most likely to result in severe injuries and fatalities when compared to other types of rail crossing accidents. However, there is currently scant research that has examined the origins of pedestrians’ rule breaking at level crossings. As a result, this study examined the origins of pedestrians’ rule breaking behaviour at crossings, with particular emphasis directed towards examining the factors associated with making errors versus deliberation violations. A total of 636 individuals volunteered to participate in the study and completed either an online or paper version of the questionnaire. Quantitative analysis of the data revealed that knowledge regarding crossing rules was high, although up to 18% of level crossing users were either unsure or did not know (in some circumstances) when it was legal to cross at a level crossing. Furthermore, 156 participants (24.52%) reported having intentionally violated the rules at level crossings and 3.46% (n = 22) of the sample had previously made a mistake at a crossing. In regards to rule violators, males (particularly minors) were more likely to report breaking rules, and the most frequent occurrence was after the train had passed rather than before it arrives. Regression analysis revealed that males who frequently use pedestrian crossings and report higher sensation seeking traits are most likely to break the rules. This research provides evidence that pedestrians are more likely to deliberately violate rules (rather than make errors) at crossings and it illuminates high risk groups. This paper will further outline the study findings in regards to the development of countermeasures as well as provide direction for future research efforts in this area.
Resumo:
How do celebrities like Gordon Ramsay appeal to consumers? This article examines one explanation. We study how celebrities appeal to consumers in the context of celebrity chefs. We examine how a consumer's self-concept clarity (SCC) interacts with their perception of the meaning that a celebrity endorser possesses. An experiment comparing fictional ads endorsed by different celebrity chefs yields the surprising result that consumers with a clear sense of who they are (high-SCC consumers) are more influenced by an ad featuring a celebrity high in meaning (Ramsay), whereas low-SCC consumers are influenced to slightly higher levels by a celebrity with lower levels of celebrity meaning.
Resumo:
We propose an architecture for a rule-based online management systems (RuleOMS). Typically, many domain areas face the problem that stakeholders maintain databases of their business core information and they have to take decisions or create reports according to guidelines, policies or regulations. To address this issue we propose the integration of databases, in particular relational databases, with a logic reasoner and rule engine. We argue that defeasible logic is an appropriate formalism to model rules, in particular when the rules are meant to model regulations. The resulting RuleOMS provides an efficient and flexible solution to the problem at hand using defeasible inference. A case study of an online child care management system is used to illustrate the proposed architecture.
Resumo:
Background: Recently there have been efforts to derive safe, efficient processes to rule out acute coronary syndrome (ACS) in emergency department (ED) chest pain patients. We aimed to prospectively validate an ACS assessment pathway (the 2-Hour Accelerated Diagnostic Protocol to Assess Patients with Chest Pain Symptoms Using Contemporary Troponins as the Only Biomarker (ADAPT) pathway) under pragmatic ED working conditions. Methods: This prospective cohort study included patients with atraumatic chest pain in whom ACS was suspected but who did not have clear evidence of ischaemia on ECG. Thrombolysis in myocardial infarction (TIMI) score and troponin (TnI Ultra) were measured at ED presentation, 2 h later and according to current national recommendations. The primary outcome of interest was the occurrence of major adverse cardiac events (MACE) including prevalent myocardial infarction (MI) at 30 days in the group who had a TIMI score of 0 and had presentation and 2-h TnI assays <99th percentile. Results: Eight hundred and forty patients were studied of whom 177 (21%) had a TIMI score of 0. There were no MI, MACE or revascularization in the per protocol and intention-to-treat 2-h troponin groups (0%, 95% confidence interval (CI) 0% to 4.5% and 0%, 95% CI 0% to 3.8%, respectively). The negative predictive value (NPV) was 100% (95% CI 95.5% to 100%) and 100% (95% CI 96.2% to 100%), respectively. Conclusions: A 2-h accelerated rule-out process for ED chest pain patients using electrocardiography, a TIMI score of 0 and a contemporary sensitive troponin assay accurately identifies a group at very low risk of 30-day MI or MACE.