848 resultados para Gold nanoparticles (AuNPs)
Resumo:
Relative to the Er3 +:gold-nanoparticle (Er3 +:Au-NP) axis, the polarization of the gold nanoparticle can be longitudinal (electric dipole parallel to the Er3 +:Au-NP axis) or transverse (electric dipole perpendicular to the Er3 +:Au-NP axis). For longitudinal polarization, the plasmon resonance modes of gold nanoparticles embedded in Er3 +-doped germanium-tellurite glass are activated using laser lines at 808 and 488 nm in resonance with radiative transitions of Er3 + ions. The gold nanoparticles were grown within the host glass by thermal annealing over various lengths of time, achieving diameters lower than 1.6 nm. The resonance wavelengths, determined theoretically and experimentally, are 770 and 800 nm. The absorption wavelength of nanoparticles was determined by using the Frohlich condition. Gold nanoparticles provide tunable emission resulting in a large enhancement for the 2H11/2 → 4I13/2 (emission at 805 nm) and 4S 3/2 → 4I13/2 (emission at 840 nm) electronic transitions of Er3 + ions; this is associated with the quantum yield of the energy transfer process. The excitation pathways, up-conversion and luminescence spectra of Er3 + ions are described through simplified energy level diagrams. We observed that up-conversion is favored by the excited-state absorption due to the presence of the gold nanoparticles coupled with the Er3 + ions within the glass matrix. © 2013 Elsevier B.V.
Resumo:
Green chemistry is an innovative way to approach the synthesis of metallic nanostructures employing eco-friendly substances (natural compounds) acting as reducing agents. Usually, slow kinetics are expected due to, use of microbiological materials. In this report we study composites of natural rubber (NR) membranes fabricated using latex from Hevea brasiliensis trees (RRIM 600) that works as reducing agent for the synthesis of gold nanoparticles. A straight and clean method is presented, to produce gold nanoparticles (AuNP) in a flexible substrate or in solution, without the use of chemical reducing reagents, and at the same time providing good size's homogeneity, reproducibility, and stability of the composites. Copyright © 2013 Flávio C. Cabrera et al.
Resumo:
In this work, a sensor was built up with smart material based on polymer brush and gold nanoparticles. The modified electrode functionalized with polyacrylic acid (PAA) tethered to indium tin oxide (ITO) and covered with gold nanoparticle (ITO/PAA/Au) demonstrated switchable interfacial properties discriminating different pHs. The switchable electrochemical and plasmonic process was characterized by cyclic voltammetry (CV), electrochemistry impedance spectroscopy (EIS), and localized surface plasmon resonance (LSPR).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A synergistic electrocatalytic effect was observed in sensors where two electrocatalytic materials (functionalized gold nanoparticles and lutetium bisphthalocyanine) were co-deposited using the Langmuir-Blodgett technique. Films were prepared using a novel method where water soluble functionalised gold nanoparticles [(11-mercaptoundecyl)tetra(ethylene glycol)] (SAuNPs) were inserted in floating films of lutetium bisphthalocyanine (LuPc2) and dimethyldioctadecylammonium bromide (DODAB) as the amphiphilic matrix. The formation of stable and homogeneous mixed films was confirmed by pi-A isotherms, BAM, UV-vis and Raman spectroscopy, as well as by SEM and TEM microscopy. The synergistic effect towards hydroquinone of the electrodes modified with LuPc2:DODAB/SAuNP was characterised by an increase in the intensity of the redox peaks and a reduction of the overpotential. This synergistic electrocatalytic effect arose from the interaction between the SAuNPs and the phthalocyanines that occur in the Langmuir-Blodgett films and from the high surface area provided by the nanostructured films. The sensitivity increased with the amount of LuPc2 and SAuNPs inserted in the films and limits of detection in the range of 10(-7) mol L-1 were attained. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Gold nanoparticles (Au-NPs) were deposited on single layer graphene (SLG) and few layers graphene (FLG) by applying the gas aggregation technique, previously adapted to a 4-gun commercial magnetron sputtering system. The samples were supported on SiO2 (280 nm)/Si substrates, and the influence of the applied DC power and deposition times on the nanoparticle-graphene system was investigated by Confocal Raman Microscopy. Analysis of the G and 2D bands of the Raman spectra shows that the integrated intensity ratio (I-2D/I-G) was higher for SLG than for FLG. For the samples produced using a sputtering power of 30W, the intensity (peak height) of the G and 2D bands increased with the deposition time, whereas for those produced applying 60W the peak heights of the G and 2D bands decreased with the deposition time. This behaviour was ascribed to the formation of larger Au-NPs aggregates in the last case. A significant increase of the Full Width Half Maximum (FWHM) of the G band for SLG and FLG was also observed as a function of the DC power and deposition time. Surprisingly, the fine details of the Raman spectra revealed an unintentional doping of SLG and FLG accompanying the increase of size and aggregation of the Au-NPs. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This manuscript reports on the fabrication of plasmonic substrates using cathodic arc plasma ion implantation, in addition to their performance as SERS substrates. The technique allows for the incorporation of a wide layer of metallic nanoparticles into a polymer matrix, such as PMMA. The ability to pattern different structures using the PMMA matrix is one of the main advantages of the fabrication method. This opens up new possibilities for obtaining tailored substrates with enhanced performance for SERS and other surface-enhanced spectroscopies, as well as for exploring the basic physics of patterned metal nanostructures. The architecture of the SERS-active substrate was varied using three adsorption strategies for incorporating a laser dye (rhodamine): alongside the nanoparticles into the polymer matrix, during the polymer cure and within nanoholes lithographed on the polymer. As a proof-of-concept, we obtained the SERS spectra of rhodamine for the three types of substrates. The hypothesis of incorporation of rhodamine molecules into the polymer matrix during the cathodic arc plasma ion implantation was supported by FDTD (Finite-Difference Time-Domain) simulations. In the case of arrays of nanoholes, rhodamine molecules could be adsorbed directly on the gold surface, then yielding a well-resolved SERS spectrum for a small amount of analyte owing to the short-range interactions and the large longitudinal field component inside the nanoholes. The results shown here demonstrate that the approach based on ion implantation can be adapted to produce reproducible tailored substrates for SERS and other surface-enhanced spectroscopies.
Resumo:
Magnetic and catalytic gold nanoparticles were electrodeposited through potential pulse on dendrimer-carbon nanotube layer-by-layer (LbL) films. A plasmon absorption band at about 550 nm revealed the presence of nanoscale gold in the film. The location of the Au nanoparticles in the film was clearly observed by selecting the magnetic force microscopy mode. To our knowledge, this is the first report on the electrochemical synthesis of magnetic Au nanoparticles. In addition to the magnetic properties, the Au nanoparticles also exhibited high catalytic activity towards ethanol and glycerol oxidation in alkaline medium.
Resumo:
Nanoplasmonics and metamaterials sciences are rapidly growing due to their contributions to photonic devices fabrication with applications ranging from biomedicine to photovoltaic cells. Noble metal nanoparticles incorporated into polymer matrix have great potential for such applications due to their distinctive optical properties. However, methods to indirectly incorporate metal nanoparticles into polymeric microstructures are still on demand. Here we report on the fabrication of two-photon polymerized microstructures doped with gold nanoparticles through an indirect doping process, so they do not interfere in the two-photon polymerization (2PP) process. Such microstructures present a strong emission, arising from gold nanoparticles fluorescence. The microstructures produced are potential candidates for nanoplasmonics and metamaterials devices applications and the nanoparticles production method can be applied in many samples, heated simultaneously, opening the possibility for large scale processes. (C) 2012 Optical Society of America
Resumo:
In the last decades noble metal nanoparticles (NPs) arose as one of the most powerful tools for applications in nanomedicine field and cancer treatment. Glioblastoma multiforme (GBM), in particular, is one of the most aggressive malignant brain tumors that nowadays still presents a dramatic scenario concerning median survival. Gold nanorods (GNRs) and silver nanoparticles (AgNPs) could find applications such as diagnostic imaging, hyperthermia and glioblastoma therapy. During these three years, both GNRs and AgNPs were synthesized with the “salt reduction” method and, through a novel double phase transfer process, using specifically designed thiol-based ligands, lipophilic GNRs and AgNPs were obtained and separately entrapped into biocompatible and biodegradable PEG-based polymeric nanoparticles (PNPs) suitable for drug delivery within the body. Moreover, a synergistic effect of AgNPs with the Alisertib drug, were investigated thanks to the simultaneous entrapment of these two moieties into PNPs. In addition, Chlorotoxin (Cltx), a peptide that specifically recognize brain cancer cells, was conjugated onto the external surface of PNPs. The so-obtained novel nanosystems were evaluated for in vitro and in vivo applications against glioblastoma multiforme. In particular, for GNRs-PNPs, their safety, their suitability as optoacoustic contrast agents, their selective laser-induced cells death and finally, a high tumor retention were all demonstrated. Concerning AgNPs-PNPs, promising tumor toxicity and a strong synergistic effect with Alisertib was observed (IC50 10 nM), as well as good in vivo biodistribution, high tumor uptake and significative tumor reduction in tumor bearing mice. Finally, the two nanostructures were linked together, through an organic framework, exploiting the click chemistry azido-alkyne Huisgen cycloaddition, between two ligands previously attached to the NPs surface; this multifunctional complex nanosystem was successfully entrapped into PNPs with nanoparticles’ properties maintenance, obtaining in this way a powerful and promising tool for cancer fight and defeat.
Resumo:
The main aim of this work was the synthesis and applications of functionalized-silica-supported gold nanoparticles. The silica-anchored functionalities employed, e.g. amine, alkynyl carbamate and sulfide moieties, possess a notable affinity with gold, so that they could be able to capture the gold precursor, to spontaneously reduce it (possibly at room temperature), and to stabilize the resulting gold nanoparticles. These new materials, potentially suitable for heterogeneous catalysis applications, could represent a breakthrough among the “green” synthesis of supported gold nanoparticles, since they would circumvent the addition of extra reducing agent and stabilizers, also allowing concomitant absorption of the active catalyst particles on the support immediately after spontaneous formation of gold nanoparticles. In chapter 4 of this thesis is also presented the work developed during a seven-months Marco Polo fellowship stay at the University of Lille (France), regarding nanoparticles nucleation and growth inside a microfluidic system and the study of the corresponding mechanism by in situ XANES spectroscopy. Finally, studies regarding the reparation and reactivity of gold decorated nanodiamonds are also described. Various methods of characterization have been used, such as ultraviolet-visible spectroscopy (UV-Vis), Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS), X-ray Fluorescence (XRF), Field Emission Gun Scanning Electron Microscopy (SEM-FEG), X-ray Photoionization (XPS), X ray Absorption Spectroscopy (XAS).
Resumo:
The physicochemical properties of nanoparticles make them suitable for biomedical applications. Due to their ‘straight-forward’ synthesis, their known biocompatibility, their strong optical properties, their ability for targeted drug delivery and their uptake potential into cells gold nanoparticles are highly interesting for biomedical applications. In particular, the therapy of brain diseases (neurodegenerative diseases, ischemic stroke) is a challenge for contemporary medicine and gold nanoparticles are currently being studied in the hope of improving drug delivery to the brain.rnIn this thesis three major conclusions from the generated data are emphasized.rn1. After improvement of the isolation protocol and culture conditions, the formation of a monolayer of porcine brain endothelial cells on transwell filters lead to a reproducible and tight in vitro monoculture which exhibited in vivo blood brain barrier (BBB) characteristics. The transport of nanoparticles across the barrier was studied using this model.rn2. Although gold nanoparticles are known to be relatively bioinert, contaminants of the nanoparticle synthesis (i.e. CTAB or sodium citrate) increased the cytotoxicity of gold nanoparticles, as shown by various publications. The results presented in this thesis demonstrate that contaminants of the nanoparticle synthesis such as sodium citrate increased the cytotoxicity of the gold nanoparticles in endothelial cells but in a more dramatic manner in epithelial cells. Considering the increased uptake of these particles by epithelial cells compared to endothelial cells it was demonstrated that the observed decrease of cell viability appeared to be related to the amount of internalized gold nanoparticles in combination with the presence of the contaminant.rn3. Systematically synthesized gold nanoparticles of different sizes with a variety of surface modifications (different chemical groups and net charges) were investigated for their uptake behaviour and functional impairment of endothelial cells, one of the major cell types making up the BBB. The targeting of these different nanoparticles to endothelial cells from different parts of the body was investigated in a comparative study of human microvascular dermal and cerebral endothelial cells. In these experiments it was demonstrated that different properties of the nanoparticles resulted in a variety of uptake patterns into cells. Positively charged gold nanoparticles were internalized in high amounts, while PEGylated nanoparticles were not taken up by both cell types. Differences in the uptake behavior were also demonstrated for neutrally charged particles of different sizes, coated with hydroxypropylamine or glucosamine. Endothelial cells of the brain specifically internalized 35nm neutrally charged hydroxypropylamine-coated gold nanoparticles in larger amounts compared to dermal microvascular endothelial cells, indicating a "targeting" for brain endothelial cells. Co-localization studies with flotillin-1 and flotillin-2 showed that the gold nanoparticles were internalized by endocytotic pathways. Furthermore, these nanoparticles exhibited transcytosis across the endothelial cell barrier in an in vitro BBB model generated with primary porcine brain endothelial cells (1.). In conclusion, gold nanoparticles with different sizes and surface characteristics showed different uptake patterns in dermal and cerebral endothelial cells. In addition, gold nanoparticles with a specific size and defined surface modification were able to cross the blood-brain barrier in a porcine in vitro model and may thus be useful for controlled delivery of drugs to the brain.