47 resultados para Glycoconjugates
Resumo:
Fasciola hepatica, commonly known as liver fluke, is a trematode which causes Fasciolosis in ruminants and humans. The outer tegumental coat of F. hepatica (FhTeg) is a complex metabolically active biological matrix that is continually exposed to the host immune system and therefore makes a good vaccine target. F. hepatica tegumental coat is highly glycosylated and helminth-derived immunogenic oligosaccharide motifs and glycoproteins are currently being investigated as novel vaccine candidates. This report presents the first systematic characterisation of FhTeg glycosylation using lectin microarrays to characterise carbohydrates motifs present, and lectin histochemistry to localize these on the F. hepatica tegument. We discovered that FhTeg glycoproteins are predominantly oligomannose oligosaccharides that are expressed on the spines, suckers and tegumental coat of F. hepatica and lectin blot analysis confirmed the abundance of N- glycosylated proteins. While some oligosaccharides are widely distributed on the fluke surface other subsets are restricted to distinct anatomical regions. We selectively enriched for FhTeg mannosylated glycoprotein subsets using lectin affinity chromatography and identified 369 proteins by mass spectrometric analysis. Among these proteins are a number of potential vaccine candidates with known immune modulatory properties including proteases, protease inhibitors, paramyosin, Venom Allergen-like II, Enolase and two proteins, nardilysin and TRIL, that have not been previously associated with F. hepatica Furthermore, we provide a comprehensive insight regarding the putative glycosylation of FhTeg components which could highlight the importance of further studies examining glycoconjugates in host-parasite interactions in the context of F. hepatica infection and the development of an effective vaccine.
Resumo:
The formation of the cartilage tissue depends on the coordination of cell to cell or cell to ECM interaction that cause to the cell polarity, migration and differentiation of precursor mesenchymal cells during chondrogenesis Many of these events are mediated by ECM components such as glycocojugates which with their suger residues such as galactose or aminosuger have a ligand role for regulatory molecules. The aim of this study was to identify the presence and distribution of some different glycoconjugates and their suger residues in the chondrogenesis by histochemistry and lectin-histochemistry techniques. For this purpose, embryos from pregnant wistar rats from E12-E20 were collected and fixed. Some of them were stained with alizarin red Salcin blue staining to demonstrate cartilage and bone formation in whole mount embryos. Other embryos with serial sections (5-7micm thikness) were stained by: 1-alcian blue (pH: l) for S-GAG,2-alcin blue (pH:2.5)for C-GAG, S-PAS alcian blue fora neutral and acidic sugers,4- tuloidin blue for metachromatic substances. Stained sections were graded according to the staining intensity (0-5 grading s method). Statistical analysis showed significant difference for those substances among experimental groups. Lectin histochemistry with MPA, VVA, SBA, OFA demonstrated differences between organs for suger residues during chondrogensis. It seems that synthesis and secretion of glycocojugates and change of their suger residues follows a spatiotemporal pattern and developmentaly regulated.