921 resultados para Glycerol dehydration
Resumo:
Nanoindentation is used to explore the variation of mechanical properties associated with the dehydration process in sodium saccharin dihydrate. Upon indenting using a Berkovich tip, (011) and (101) faces exhibit explicit mechanical anisotropy that is consistent with the underlying crystal structure and intermolecular interactions. For freshly grown crystals, (011) is stiffer than (101) by 14%, while (101) is harder than (011) by 8%. Being a heavily hydrated system, the measured mechanical responses contain information pertinent to the fluidity associated with lattice water. Indentation on (011) with a sharp cube-corner tip induces a fluid flow; this observation is uncommon in molecular crystals. The crystals effloresce over a period of time with the generation of a more compact crystal structure and consequently increasing H and E.
Resumo:
Poly(3,4-ethylenedioxythiophene) (PEDOT) supported PdRu catalysts with various Pd:Ru atomic ratios are prepared by one step electrodeposition method. The catalysts are characterised by several physico-chemical techniques. The morphology depends on Pd:Ru ratio. The nanoflowers of Pd5Ru catalyst are deposited on PEDOT surface in an alloy form. Cyclic voltammetry experiments indicate that Ru improves the catalytic activity of Pd for glycerol oxidation significantly. However, the oxidation of glycerol is not observed on Ru-PEDOT/C electrode. Amongst all compositions, Pd5Ru nanoflowers on PEDOT exhibit the highest electrocatalytic activity and stability. Cyclic voltammetry and differential pulse voltammetry experiments are performed for the analysis of glycerol. Pd5Ru-PEDOT/C electrode is highly sensitive towards glycerol detection with sensitivity of 99.8 mu A cm(-2) mu M-1 and low detection limit of 0.1 mu M. Thus, electrochemically deposited nanoflowers Pd5Ru on PEDOT are efficient catalysts for direct glycerol oxidation as well as for analysis in alkaline media. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Abstract de congreso: Póster presentado en 12th International Conference on Materials Chemistry (MC12), 20 - 23 July 2015, York, United Kingdom
Resumo:
This paper deals with the dehydration of prawns in a tunnel dryer. Conditions required to produce an end-product of desired colour, shape and texture as well as good reconstitution and organoleptic properties which are not obtained in the normal hot air drying, have been worked out. An initial temperature and relative humidity of 90°C. and 85%-90% respectively and an air velocity not more than 1 metre/second are the essential conditions required. Both temperature and relative humidity are to be reduced to 70°C and 40% respectively after about an hour's operation, till the drying is complete. Flavour of the reconstituted product is close to that of the fresh cooked prawns and the texture is judged to be soft. Drying time required to reduce the moisture content of fresh prawns to 15% level is about 7 hours compared to 6-7 hours in normal hot air drying and more than 36 hours in sun-drying.
Resumo:
The paper deals with studies made to modify the process of drying of prawns in rotary drum dryer reported by the authors earlier. Prawns belonging to any species except M. monoceros can be satisfactorily dried. With M. monoceros invariably considerable adherence of shell occurs. Prawns of any size group can be dried provided in the case of medium and big size prawns they are beheaded prior to drying. In all size groups, beheading prior to drying results in better appearance of the end product in addition to the output of the dryer per charge being increased.