889 resultados para Glucose Uptake
Resumo:
Evidence points to a role of the mammalian target of rapamycin (mTOR) signaling pathway as a regulator of adiposity, yet its involvement as a mediator of the positive actions of peroxisome proliferator-activated receptor (PPAR)gamma agonism on lipemia, fat accretion, lipid uptake, and its major determinant lipoprotein lipase (LPL) remains to be elucidated. Herein we evaluated the plasma lipid profile, triacylglycerol (TAG) secretion rates, and adipose tissue LPL-dependent lipid uptake, LPL expression/activity, and expression profile of other lipid metabolism genes in rats treated with the PPAR gamma agonist rosiglitazone (15 mg/kg/day) in combination or not with the mTOR inhibitor rapamycin (2 mg/kg/day) for 15 days. Rosiglitazone stimulated adipose tissue mTOR complex 1 and AMPK and induced TAG-derived lipid uptake (136%), LPL mRNA/activity (2- to 6-fold), and fat accretion in subcutaneous (but not visceral) white adipose tissue (WAT; 50%) and in brown adipose tissue (BAT; 266%). Chronic mTOR inhibition attenuated the upregulation of lipid uptake, LPL expression/activity, and fat accretion induced by PPAR gamma activation in both subcutaneous WAT and BAT, which resulted in hyperlipidemia. In contrast, rapamycin did not affect most of the other WAT lipogenic genes upregulated by rosiglitazone. Together these findings demonstrate that mTOR is a major regulator of adipose tissue LPL-mediated lipid uptake and a critical mediator of the hypolipidemic and lipogenic actions of PPAR gamma activation.-Blanchard, P-G., W. T. Festuccia, V. P. Houde, P. St-Pierre, S. Brule, V. Turcotte, M. Cote, K. Bellmann, A. Marette, and Y. Deshaies. Major involvement of mTOR in the PPAR gamma-induced stimulation of adipose tissue lipid uptake and fat accretion. J. Lipid Res. 2012. 53: 1117-1125.
Resumo:
Background: Thyroid hormones (THs) act genomically to stimulate glucose transport by elevating glucose transporter (Slc2a) expression and glucose utilization by cells. However, nongenomic effects of THs are now emerging. Here, we assess how triiodothyronine (T-3) acutely affects glucose transport and the content of GLUT4, GLUT1, and GLUT3 at the surface of muscle cells, and possible interactions between T-3 and insulin action. Methods: Differentiated L6 myotubes transfected with myc-tagged Slc2a4 (L6-GLUT4myc) or Slc2a1 (L6-GLUT1myc) and wild-type L6 myotubes were studied in the following conditions: control, hypothyroid (Tx), Tx plus T3, Tx plus insulin, and Tx plus insulin and T-3. Results: Glucose uptake and GLUT4 content at the cell surface decreased in the Tx group relative to controls. T-3 treatment for 30 minutes increased glucose transport into L6-GLUT4myc cells without altering surface GLUT4 content, which increased only thereafter. The total amount of GLUT4 protein remained unchanged among the groups studied. The surface GLUT1 content of L6-GLUT1myc cells also remained unaltered after T-3 treatment; however, in these cells glucose transport was not stimulated by T-3. In wild-type L6 cells, although T-3 treatment increased the total amount of GLUT3, it did not change the surface GLUT3 content. Moreover, within 30 minutes, T-3 stimulation of glucose uptake was additive to that of insulin in L6-GLUT4myc cells. As expected, insulin elevated surface GLUT4 content and glucose uptake. However, interestingly, surface GLUT4 content remained unchanged or even dropped with T-3 plus insulin. Conclusions: These data reveal that T-3 rapidly increases glucose uptake in L6-GLUT4myc cells, which, at least for 30 minutes, did not depend on an increment in GLUT4 at the cell surface yet potentiates insulin action. We propose that this rapid T-3 effect involves activation of GLUT4 transporters at the cell surface, but cannot discount the involvement of an unknown GLUT.
Resumo:
Activators of 5'-AMP-activated protein kinase (AMPK) 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR), metformin, and exercise activate atypical protein kinase C (aPKC) and ERK and stimulate glucose transport in muscle by uncertain mechanisms. Here, in cultured L6 myotubes: AICAR- and metformin-induced activation of AMPK was required for activation of aPKC and ERK; aPKC activation involved and required phosphoinositide-dependent kinase 1 (PDK1) phosphorylation of Thr410-PKC-zeta; aPKC Thr410 phosphorylation and activation also required MEK1-dependent ERK; and glucose transport effects of AICAR and metformin were inhibited by expression of dominant-negative AMPK, kinase-inactive PDK1, MEK1 inhibitors, kinase-inactive PKC-zeta, and RNA interference (RNAi)-mediated knockdown of PKC-zeta. In mice, muscle-specific aPKC (PKC-lambda) depletion by conditional gene targeting impaired AICAR-stimulated glucose disposal and stimulatory effects of both AICAR and metformin on 2-deoxyglucose/glucose uptake in muscle in vivo and AICAR stimulation of 2-[(3)H]deoxyglucose uptake in isolated extensor digitorum longus muscle; however, AMPK activation was unimpaired. In marked contrast to AICAR and metformin, treadmill exercise-induced stimulation of 2-deoxyglucose/glucose uptake was not inhibited in aPKC-knockout mice. Finally, in intact rodents, AICAR and metformin activated aPKC in muscle, but not in liver, despite activating AMPK in both tissues. The findings demonstrate that in muscle AICAR and metformin activate aPKC via sequential activation of AMPK, ERK, and PDK1 and the AMPK/ERK/PDK1/aPKC pathway is required for metformin- and AICAR-stimulated increases in glucose transport. On the other hand, although aPKC is activated by treadmill exercise, this activation is not required for exercise-induced increases in glucose transport, and therefore may be a redundant mechanism.
Resumo:
Glucose supply markedly changes during the transition to extrauterine life. In this study, we investigated diet effects on glucose metabolism in neonatal calves. Calves were fed colostrum (C; n = 7) or milk-based formula (F; n = 7) with similar nutrient content up to d 4 of life. Blood plasma samples were taken daily before feeding and 2 h after feeding on d 4 to measure glucose, lactate, nonesterified fatty acids, protein, urea, insulin, glucagon, and cortisol concentrations. On d 2, additional blood samples were taken to measure glucose first-pass uptake (FPU) and turnover by oral [U-(13)C]-glucose and i.v. [6,6-(2)H(2)]-glucose infusion. On d 3, endogenous glucose production and gluconeogenesis were determined by i.v. [U-(13)C]-glucose and oral deuterated water administration after overnight feed deprivation. Liver tissue was obtained 2 h after feeding on d 4 and glycogen concentration and activities and mRNA abundance of gluconeogenic enzymes were measured. Plasma glucose and protein concentrations and hepatic glycogen concentration were higher (P < 0.05), whereas plasma urea, glucagon, and cortisol (d 2) concentrations as well as hepatic pyruvate carboxylase mRNA level and activity were lower (P < 0.05) in group C than in group F. Orally administered [U-(13)C]-glucose in blood was higher (P < 0.05) but FPU tended to be lower (P < 0.1) in group C than in group F. The improved glucose status in group C resulted from enhanced oral glucose absorption. Metabolic and endocrine changes pointed to elevated amino acid degradation in group F, presumably to provide substrates to meet energy requirements and to compensate for impaired oral glucose uptake.
Resumo:
To determine the immediate effect of thiazolidinediones on human skeletal muscle, differentiated human myotubes were acutely (1 day) and myoblasts chronically (during the differentiation process) treated with troglitazone (TGZ). Chronic TGZ treatment resulted in loss of the typical multinucleated phenotype. The increase of muscle markers typically observed during differentiation was suppressed, while adipocyte markers increased markedly. Chronic TGZ treatment increased insulin-stimulated phosphatidylinositol (PI) 3-kinase activity and membranous protein kinase B/Akt (PKB/Akt) Ser-473 phosphorylation more than 4-fold. Phosphorylation of p42/44 mitogen-activated protein kinase (42/44 MAPK/ERK) was unaltered. Basal glucose uptake as well as both basal and insulin-stimulated glycogen synthesis increased approximately 1.6- and approximately 2.5-fold after chronic TGZ treatment, respectively. A 2-fold stimulation of PI 3-kinase but no other significant TGZ effect was found after acute TGZ treatment. In conclusion, chronic TGZ treatment inhibited myogenic differentiation of that human muscle while inducing adipocyte-specific gene expression. The effects of chronic TGZ treatment on basal glucose transport may in part be secondary to this transdifferentiation. The enhancing effect on PI 3-kinase and PKB/Akt involved in both differentiation and glycogen synthesis appears to be pivotal in the cellular action of TGZ.
Resumo:
INTRODUCTION: Maintaining arterial blood glucose within tight limits is beneficial in critically ill patients. Upper and lower limits of detrimental blood glucose levels must be determined. METHODS: In 69 patients with severe traumatic brain injury (TBI), cerebral metabolism was monitored by assessing changes in arterial and jugular venous blood at normocarbia (partial arterial pressure of carbon dioxide (paCO2) 4.4 to 5.6 kPa), normoxia (partial arterial pressure of oxygen (paO2) 9 to 20 kPa), stable haematocrit (27 to 36%), brain temperature 35 to 38 degrees C, and cerebral perfusion pressure (CPP) 70 to 90 mmHg. This resulted in a total of 43,896 values for glucose uptake, lactate release, oxygen extraction ratio (OER), carbon dioxide (CO2) and bicarbonate (HCO3) production, jugular venous oxygen saturation (SjvO2), oxygen-glucose index (OGI), lactate-glucose index (LGI) and lactate-oxygen index (LOI). Arterial blood glucose concentration-dependent influence was determined retrospectively by assessing changes in these parameters within pre-defined blood glucose clusters, ranging from less than 4 to more than 9 mmol/l. RESULTS: Arterial blood glucose significantly influenced signs of cerebral metabolism reflected by increased cerebral glucose uptake, decreased cerebral lactate production, reduced oxygen consumption, negative LGI and decreased cerebral CO2/HCO3 production at arterial blood glucose levels above 6 to 7 mmol/l compared with lower arterial blood glucose concentrations. At blood glucose levels more than 8 mmol/l signs of increased anaerobic glycolysis (OGI less than 6) supervened. CONCLUSIONS: Maintaining arterial blood glucose levels between 6 and 8 mmol/l appears superior compared with lower and higher blood glucose concentrations in terms of stabilised cerebral metabolism. It appears that arterial blood glucose values below 6 and above 8 mmol/l should be avoided. Prospective analysis is required to determine the optimal arterial blood glucose target in patients suffering from severe TBI.
Resumo:
In general, vascular contributions to the in vivo magnetic resonance (MR) brain spectrum are too small to be relevant. In cerebral uptake studies, however, vascular contributions may constitute a major confounder. MR visibility of vascular Phe was investigated by recording localized spectra from fully oxygenated and well-mixed whole blood. Blood Phe levels determined by MR spectroscopy (MRS) and ion-exchange chromatography showed excellent correlation. In addition, effects of blood flow were shown to have a small effect on signal amplitude with the MRS methodology used. Hence, blood Phe is almost completely MR visible at 1.5 T, even though it is severely broadened at higher fields. Without appropriate correction, cerebral Phe influx in studies of brain Phe uptake in phenylketonuria patients or healthy subjects would appear to be faster and lead to higher levels. Similar effects are envisaged for studies of ethanol or glucose uptake across the blood-brain barrier.
Resumo:
The H19 lncRNA has been implicated in development and growth control and is associated with human genetic disorders and cancer. Acting as a molecular sponge, H19 inhibits microRNA (miRNA) let-7. Here we report that H19 is significantly decreased in muscle of human subjects with type-2 diabetes and insulin resistant rodents. This decrease leads to increased bioavailability of let-7, causing diminished expression of let-7 targets, which is recapitulated in vitro where H19 depletion results in impaired insulin signaling and decreased glucose uptake. Furthermore, acute hyperinsulinemia downregulates H19, a phenomenon that occurs through PI3K/AKT-dependent phosphorylation of the miRNA processing factor KSRP, which promotes biogenesis of let-7 and its mediated H19 destabilization. Our results reveal a previously undescribed double-negative feedback loop between sponge lncRNA and target miRNA that contributes to glucose regulation in muscle cells.
ASSESSMENT OF SKELETAL MUSCLE BLOOD FLOW AND GLUCOSE METABOLISM WITH POSITRON EMITTING RADIONUCLIDES
Resumo:
In order to evaluate factors regulating substrate metabolism in vivo positron emitting radionuclides were used for the assessment of skeletal muscle blood flow and glucose utilization. The potassium analog, Rb-82 was used to measure skeletal muscle blood flow and the glucose analog, 18-F-2-deoxy-2-fluoro-D-glucose (FDG) was used to examine the kinetics of skeletal muscle transport and phosphorylation.^ New Zealand white rabbits' blood flow ranged from 1.0-70 ml/min/100g with the lowest flows occurring under baseline conditions and the highest flows were measured immediately after exercise. Elevated plasma glucose had no effect on increasing blood flow, whereas high physiologic to pharmacologic levels of insulin doubled flow as measured by the radiolabeled microspheres, but a proportionate increase was not detected by Rb-82. The data suggest that skeletal muscle blood flow can be measured using the positron emitting K+ analog Rb-82 under low flow and high flow conditions but not when insulin levels in the plasma are elevated. This may be due to the fact that insulin induces an increase in the Na+/K+-ATPase activity of the cell indirectly through a direct increase in the Na+/H+pump activity. This suggests that the increased cation pump activity counteracts the normal decrease in extraction seen at higher flows resulting in an underestimation of flow as measured by rubidium-82.^ Glucose uptake as measured by FDG employed a three compartment mathematical model describing the rates of transport, countertransport and phosphorylation of hexose. The absolute values for the metabolic rate of FDG were found to be an order of magnitude higher than those reported by other investigators. Changes noted in the rate constant for transport (k1) were found to disagree with the a priori information on the effects of insulin on skeletal muscle hexose transport. Glucose metabolism was however, found to increase above control levels with administration of insulin and electrical stimulation. The data indicate that valid measurements of skeletal muscle glucose transport and phosphorylation using the positron emitting glucose analog FDG requires further model application and biochemical validation. (Abstract shortened with permission of author.) ^
Resumo:
Despite the popularity of the positron emitting glucose analog, ($\sp{18}$F) -2-deoxy-2-fluoro-D-glucose (2FDG), for the noninvasive "metabolic imaging" of organs with positron emission tomography (PET), the physiological basis for the tracer has not been tested, and the potential of 2FDG for the rapid kinetic analysis of altered glucose metabolism in the intact heart has not been fully exploited. We, therefore, developed a quantitative method to characterize metabolic changes of myocardial glucose metabolism noninvasively and with high temporal resolution.^ The first objective of the work was to provide direct evidence that the initial steps in the metabolism of 2FDG are the same as for glucose and that 2FDG is retained by the tissue in proportion to the rate of glucose utilization. The second objective was to characterize the kinetic changes in myocardial glucose transport and phosphorylation in response to changes in work load, competing substrates, acute ischemia and reperfusion, and the addition of insulin. To assess changes in myocardial glucose metabolism isolated working rat hearts were perfused with glucose and 2FDG. Tissue uptake of 2FDG and the input function were measured on-line by external detection. The steady state rate of 2FDG phosphorylation was determined by graphical analysis of 2FDG time-activity curves.^ The rate of 2FDG uptake was linear with time and the tracer was retained in its phosphorylated form. Tissue accumulation of 2FDG decreased within seconds with a reduction in work load, in the presence of competing substrates, and during reperfusion after global ischemia. Thus, most interventions known to alter glucose metabolism induced rapid parallel changes in 2FDG uptake. By contrast, insulin caused a significant increase in 2FDG accumulation only in hearts from fasted animals when perfused at a sub-physiological work load. The mechanism for this phenomenon is not known but may be related to the existence of two different glucose transporter systems and/or glycogen metabolism in the myocardial cell.^ It is concluded that (1) 2FDG traces glucose uptake and phosphorylation in the isolated working rat heart; and (2) early and transient kinetic changes in glucose metabolism can be monitored with high temporal resolution with 2FDG and a simple positron coincidence counting system. The new method has revealed transients of myocardial glucose metabolism, which would have remained unnoticed with conventional methods. These transients are not only important for the interpretation of glucose metabolic PET scans, but also provide insights into mechanisms of glucose transport and phosphorylation in heart muscle. ^
Resumo:
A major physiological role of insulin is the regulation of glucose uptake into skeletal and cardiac muscle and adipose tissue, mediated by an insulin-stimulated translocation of GLUT4 glucose transporters from an intracellular vesicular pool to the plasma membrane. This process is similar to the regulated docking and fusion of vesicles in neuroendocrine cells, a process that involves SNARE-complex proteins. Recently, several SNARE proteins were found in adipocytes: vesicle-associated membrane protein (VAMP-2), its related homologue cellubrevin, and syntaxin-4. In this report we show that treatment of permeabilized 3T3-L1 adipocytes with botulinum neurotoxin D, which selectively cleaves VAMP-2 and cellubrevin, inhibited the ability of insulin to stimulate translocation of GLUT4 vesicles to the plasma membrane. Furthermore, treatment of the permeabilized adipocytes with glutathione S-transferase fusion proteins encoding soluble forms of VAMP-2 or syntaxin-4 also effectively blocked insulin-regulated GLUT4 translocation. These results provide evidence of a functional role for SNARE-complex proteins in insulin-stimulated glucose uptake and suggest that adipocytes utilize a mechanism of regulating vesicle docking and fusion analogous to that found in neuroendocrine tissues.
Resumo:
The brain has enormous anabolic needs during early postnatal development. This study presents multiple lines of evidence showing that endogenous brain insulin-like growth factor 1 (Igf1) serves an essential, insulin-like role in promoting neuronal glucose utilization and growth during this period. Brain 2-deoxy-d- [1-14C]glucose uptake parallels Igf1 expression in wild-type mice and is profoundly reduced in Igf1−/− mice, particularly in those structures where Igf1 is normally most highly expressed. 2-Deoxy-d- [1-14C]glucose is significantly reduced in synaptosomes prepared from Igf1−/− brains, and the deficit is corrected by inclusion of Igf1 in the incubation medium. The serine/threonine kinase Akt/PKB is a major target of insulin-signaling in the regulation of glucose transport via the facilitative glucose transporter (GLUT4) and glycogen synthesis in peripheral tissues. Phosphorylation of Akt and GLUT4 expression are reduced in Igf1−/− neurons. Phosphorylation of glycogen synthase kinase 3β and glycogen accumulation also are reduced in Igf1−/− neurons. These data support the hypothesis that endogenous brain Igf1 serves an anabolic, insulin-like role in developing brain metabolism.
Resumo:
Muscle tissue is the major site for insulin-stimulated glucose uptake in vivo, due primarily to the recruitment of the insulin-sensitive glucose transporter (GLUT4) to the plasma membrane. Surprisingly, virtually all cultured muscle cells express little or no GLUT4. We show here that adenovirus-mediated expression of the transcriptional coactivator PGC-1, which is expressed in muscle in vivo but is also deficient in cultured muscle cells, causes the total restoration of GLUT4 mRNA levels to those observed in vivo. This increased GLUT4 expression correlates with a 3-fold increase in glucose transport, although much of this protein is transported to the plasma membrane even in the absence of insulin. PGC-1 mediates this increased GLUT4 expression, in large part, by binding to and coactivating the muscle-selective transcription factor MEF2C. These data indicate that PGC-1 is a coactivator of MEF2C and can control the level of endogenous GLUT4 gene expression in muscle.
Resumo:
We have generated herpes simplex virus (HSV) vectors vIE1GT and v alpha 4GT bearing the GLUT-1 isoform of the rat brain glucose transporter (GT) under the control of the human cytomegalovirus ie1 and HSV alpha 4 promoters, respectively. We previously reported that such vectors enhance glucose uptake in hippocampal cultures and the hippocampus. In this study we demonstrate that such vectors can maintain neuronal metabolism and reduce the extent of neuron loss in cultures after a period of hypoglycemia. Microinfusion of GT vectors into the rat hippocampus also reduces kainic acid-induced seizure damage in the CA3 cell field. Furthermore, delivery of the vector even after onset of the seizure is protective, suggesting that HSV-mediated gene transfer for neuroprotection need not be carried out in anticipation of neurologic crises. Using the bicistronic vector v alpha 22 beta gal alpha 4GT, which coexpresses both GT and the Escherichia coli lacZ marker gene, we further demonstrate an inverse correlation between the extent of vector expression in the dentate and the amount of CA3 damage resulting from the simultaneous delivery of kainic acid.
Resumo:
The acute effects of contraction and insulin on the glucose transport and GLUT4 glucose transporter translocation were investigated in rat soleus muscles by using a 3-O-methylglucose transport assay and the sensitive exofacial labeling technique with the impermeant photoaffinity reagent 2-N-4-(1-azi-2,2,2-trifluoroethyl)benzoyl-1,3-bis(D-mannose-4-y loxy)-2- propylamine (ATB-BMPA), respectively. Addition of wortmannin, which inhibits phosphatidylinositol 3-kinase, reduced insulin-stimulated glucose transport (8.8 +/- 0.5 mumol per ml per h vs. 1.4 +/- 0.1 mumol per ml per h) and GLUT4 translocation [2.79 +/- 0.20 pmol/g (wet muscle weight) vs. 0.49 +/- 0.05 pmol/g (wet muscle weight)]. In contrast, even at a high concentration (1 microM), wortmannin had no effect on contraction-mediated glucose uptake (4.4 +/- 0.1 mumol per ml per h vs. 4.1 +/- 0.2 mumol per ml per h) and GLUT4 cell surface content [1.75 +/- 0.16 pmol/g (wet muscle weight) vs. 1.52 +/- 0.16 pmol/g (wet muscle weight)]. Contraction-mediated translocation of the GLUT4 transporters to the cell surface was closely correlated with the glucose transport activity and could account fully for the increment in glucose uptake after contraction. The combined effects of contraction and maximal insulin stimulation were greater than either stimulation alone on glucose transport activity (11.5 +/- 0.4 mumol per ml per h vs. 5.6 +/- 0.2 mumol per ml per h and 9.0 +/- 0.2 mumol per ml per h) and on GLUT4 translocation [4.10 +/- 0.20 pmol/g (wet muscle weight) vs. 1.75 +/- 0.25 pmol/g (wet muscle weight) and 3.15 +/- 0.18 pmol/g (wet muscle weight)]. The results provide evidence that contraction stimulates translocation of GLUT4 in skeletal muscle through a mechanism distinct from that of insulin.