964 resultados para Glucose Transporter Genes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adult Schistosoma mansoni blood flukes reside in the mesenteric veins of their vertebrate hosts, where they absorb immense quantities of glucose through their tegument by facilitated diffusion. Previously, we obtained S. mansoni cDNAs encoding facilitated-diffusion schistosome glucose transporter proteins 1 and 4 (SGTP1 and SGTP4) and localized SGTP1 to the basal membranes of the tegument and the underlying muscle. In this study, we characterize the expression and localization of SGTP4 during the schistosome life cycle. Antibodies specific to SGTP4 appear to stain only the double-bilayer, apical membranes of the adult parasite tegument, revealing an asymmetric distribution relative to the basal transporter SGTP1. On living worms, SGTP4 is available to surface biotinylation, suggesting that it is exposed at the hose-parasite interface. SGTP4 is detected shortly after the transformation of free-living, infectious cercariae into schistosomula and coincides with the appearance of the double membrane. Within 15 min after transformation, anti-SGTP4 staining produces a bright, patchy distribution at the surface of schistosomula, which becomes contiguous over the entire surface of the schistosomula by 24 hr after transformation. SGTP4 is not detected in earlier developmental stages (eggs, sporocysts, and cercariae) that do not possess the specialized double membrane. Thus, SGTP4 appears to be expressed only in the mammalian stages of the parasite's life cycle and specifically localized within the host-interactive, apical membranes of the tegument.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have generated herpes simplex virus (HSV) vectors vIE1GT and v alpha 4GT bearing the GLUT-1 isoform of the rat brain glucose transporter (GT) under the control of the human cytomegalovirus ie1 and HSV alpha 4 promoters, respectively. We previously reported that such vectors enhance glucose uptake in hippocampal cultures and the hippocampus. In this study we demonstrate that such vectors can maintain neuronal metabolism and reduce the extent of neuron loss in cultures after a period of hypoglycemia. Microinfusion of GT vectors into the rat hippocampus also reduces kainic acid-induced seizure damage in the CA3 cell field. Furthermore, delivery of the vector even after onset of the seizure is protective, suggesting that HSV-mediated gene transfer for neuroprotection need not be carried out in anticipation of neurologic crises. Using the bicistronic vector v alpha 22 beta gal alpha 4GT, which coexpresses both GT and the Escherichia coli lacZ marker gene, we further demonstrate an inverse correlation between the extent of vector expression in the dentate and the amount of CA3 damage resulting from the simultaneous delivery of kainic acid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The acute effects of contraction and insulin on the glucose transport and GLUT4 glucose transporter translocation were investigated in rat soleus muscles by using a 3-O-methylglucose transport assay and the sensitive exofacial labeling technique with the impermeant photoaffinity reagent 2-N-4-(1-azi-2,2,2-trifluoroethyl)benzoyl-1,3-bis(D-mannose-4-y loxy)-2- propylamine (ATB-BMPA), respectively. Addition of wortmannin, which inhibits phosphatidylinositol 3-kinase, reduced insulin-stimulated glucose transport (8.8 +/- 0.5 mumol per ml per h vs. 1.4 +/- 0.1 mumol per ml per h) and GLUT4 translocation [2.79 +/- 0.20 pmol/g (wet muscle weight) vs. 0.49 +/- 0.05 pmol/g (wet muscle weight)]. In contrast, even at a high concentration (1 microM), wortmannin had no effect on contraction-mediated glucose uptake (4.4 +/- 0.1 mumol per ml per h vs. 4.1 +/- 0.2 mumol per ml per h) and GLUT4 cell surface content [1.75 +/- 0.16 pmol/g (wet muscle weight) vs. 1.52 +/- 0.16 pmol/g (wet muscle weight)]. Contraction-mediated translocation of the GLUT4 transporters to the cell surface was closely correlated with the glucose transport activity and could account fully for the increment in glucose uptake after contraction. The combined effects of contraction and maximal insulin stimulation were greater than either stimulation alone on glucose transport activity (11.5 +/- 0.4 mumol per ml per h vs. 5.6 +/- 0.2 mumol per ml per h and 9.0 +/- 0.2 mumol per ml per h) and on GLUT4 translocation [4.10 +/- 0.20 pmol/g (wet muscle weight) vs. 1.75 +/- 0.25 pmol/g (wet muscle weight) and 3.15 +/- 0.18 pmol/g (wet muscle weight)]. The results provide evidence that contraction stimulates translocation of GLUT4 in skeletal muscle through a mechanism distinct from that of insulin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-fat intake leading to obesity contributes to the development of non-insulin-dependent diabetes mellitus (NIDDM, type 2). Similarly, mice fed a high-fat (safflower oil) diet develop defective glycemic control, hyperglycemia, and obesity. To assess the effect of a modest increase in the expression of GLUT4 (the insulin-responsive glucose transporter) on impaired glycemic control caused by fat feeding, transgenic mice harboring a GLUT4 minigene were fed a high-fat diet. Low-level tissue-specific (heart, skeletal muscle, and adipose tissue) expression of the GLUT4 minigene in transgenic mice prevented the impairment of glycemic control and accompanying hyperglycemia, but not obesity, caused by fat feeding. Thus, a small increase (< or = 2-fold) in the tissue level of GLUT4 prevents a primary symptom of the diabetic state in a mouse model, suggesting a possible target for intervention in the treatment of NIDDM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We previously demonstrated that distinct facilitative glucose transporter isoforms display differential sorting in polarized epithelial cells. In Madin-Darby canine kidney (MDCK) cells, glucose transporter 1 and 2 (GLUT1 and GLUT2) are localized to the basolateral cell surface whereas GLUTs 3 and 5 are targeted to the apical membrane. To explore the molecular mechanisms underlying this asymmetric distribution, we analyzed the targeting of chimeric glucose transporter proteins in MDCK cells. Replacement of the carboxy-terminal cytosolic tail of GLUT1, GLUT2, or GLUT4 with that from GLUT3 resulted in apical targeting. Conversely, a GLUT3 chimera containing the cytosolic carboxy terminus of GLUT2 was sorted to the basolateral membrane. These findings are not attributable to the presence of a basolateral signal in the tails of GLUTs 1, 2, and 4 because the basolateral targeting of GLUT1 was retained in a GLUT1 chimera containing the carboxy terminus of GLUT5. In addition, we were unable to demonstrate the presence of an autonomous basolateral sorting signal in the GLUT1 tail using the low-density lipoprotein receptor as a reporter. By examining the targeting of a series of more defined GLUT1/3 chimeras, we found evidence of an apical targeting signal involving residues 473 - 484 (DRSGKDGVMEMN) in the carboxy tail. We conclude that the targeting of GLUT3 to the apical cell surface in MDCK cells is regulated by a unique cytosolic sorting motif.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recent identification of several additional members of the family of sugar transport facilitators (gene symbol SLC2A, protein symbol GLUT) has created a heterogeneous and, in part, confusing nomenclature. Therefore, this letter provides a summary of the family members and suggests a systematic nomenclature for SLC2A and GLUT symbols.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contractile activity induces a marked increase in glycolytic activity and gene expression of enzymes and transporters involved in glucose metabolism in skeletal muscle. Muscle contraction also increases the production of reactive oxygen species (ROS). In this study, the effects of treatment with N-acetylcysteine (NAC), a potent antioxidant compound, on contraction-stimulated glycolysis were investigated in electrically stimulated primary rat skeletal muscle cells. The following parameters were measured: 2-[(3)H]deoxyglucose (2-DG) uptake; activities of hexokinase, phosphofructokinase (PFK), and glucose-6-phosphate dehydrogenase (G6PDH); lactate production; and expression of the glucose transporter 4 (GLUT4), hexokinase II (HKII), and PFK genes after one bout of electrical stimulation in primary rat myotubes. NAC treatment decreased ROS signal by 49% in resting muscle cells and abolished the muscle contraction-induced increase in ROS levels. In resting cells, NAC decreased mRNA and protein contents of GLUT4, mRNA content and activity of PFK, and lactate production. NAC treatment suppressed the contraction-mediated increase in 2-DG uptake; lactate production; hexokinase, PFK, and G6PDH activities; and gene expression of GLUT4. HKII, and PFK. Similar to muscle contraction, exogenous H(2)O(2) (500 nM) administration increased 2-DG uptake; lactate production; hexokinase, PFK, and G6PDH activities; and gene expression of GLUT4. HKII, and PFK. These findings support the proposition that ROS endogenously produced play an important role in the changes in glycolytic activity and gene expression of GLUT4, HKII, and PFK induced by contraction in skeletal muscle cells. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oocyte-secreted factors (OSFs) regulate differentiation of cumulus cells and are of pivotal relevance for fertility. Bone morphogenetic protein 15 (BMP15) and fibroblast growth factor 10 (FGF10) are OSFs and enhance oocyte competence by unknown mechanisms. We tested the hypothesis that BMP15 and FGF10, alone or combined in the maturation medium, enhance cumulus expansion and expression of genes in the preovulatory cascade and regulate glucose metabolism favouring hyaluronic acid production in bovine cumulus-oocyte complexes (COCs). BMP15 or FGF10 increased the percentage of fully expanded COCs, but the combination did not further stimulate it. BMP15 increased cumulus cell levels of mRNA encoding a disintegrin and metalloprotease 10 (ADAM10), ADAM17, amphiregulin (AREG), and epiregulin (EREG) at 12 h of culture and of prostaglandin (PG)-endoperoxide synthase 2 (PTGS2), pentraxin 3 (PTX3) and tumor necrosis factor alpha-induced protein 6 (TNFAIP6 (TSG6)) at 22 h of culture. FGF10 did not alter the expression of epidermal growth factor-like factors but enhanced the mRNA expression of PTGS2 at 4 h, PTX3 at 12 h, and TNFAIP6 at 22 h. FGF10 and BMP15 stimulated glucose consumption by cumulus cells but did not affect lactate production or levels of mRNA encoding glycolytic enzymes phosphofructokinase and lactate dehydrogenase A. Each growth factor increased mRNA encoding glucosamine:fructose-6-PO4 transaminases, key enzymes in the hexosamine pathway leading to hyaluronic acid production, and BMP15 also stimulated hyaluronan synthase 2 (HAS2) mRNA expression. This study provides evidence that BMP15 and FGF10 stimulate expansion of in vitro-matured bovine COCs by driving glucose metabolism toward hyaluronic acid production and controlling the expression of genes in the ovulatory cascade, the first acting upon ADAM10, ADAM17, AREG, and EREG and the second on downstream genes, particularly PTGS2. © 2013 Society for Reproduction and Fertility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The authors test single nucleotide polymorphisms (SNPs) in coding sequences of 12 candidate genes involved in glucose metabolism and obesity for associations with spina bifida. Genotyping was performed on 507 children with spina bifida and their parents plus anonymous control DNAs from Hispanic and Caucasian individuals. The transmission disequilibrium test was performed to test for genetic associations between transmission of alleles and spina bifida in the offspring (P < .05). A statistically significant association between Lys481 of HK1 (G allele), Arg109Lys of LEPR (G allele), and Pro196 of GLUT1 (A allele) was found ( P = .019, .039, and .040, respectively). Three SNPs on 3 genes involved with glucose metabolism and obesity may be associated with increased susceptibility to spina bifida.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hepatocyte nuclear factor 4α (HNF4α) plays a critical role in regulating the expression of many genes essential for normal functioning of liver, gut, kidney, and pancreatic islets. A nonsense mutation (Q268X) in exon 7 of the HNF4α gene is responsible for an autosomal dominant, early-onset form of non-insulin-dependent diabetes mellitus (maturity-onset diabetes of the young; gene named MODY1). Although this mutation is predicted to delete 187 C-terminal amino acids of the HNF4α protein the molecular mechanism by which it causes diabetes is unknown. To address this, we first studied the functional properties of the MODY1 mutant protein. We show that it has lost its transcriptional transactivation activity, fails to dimerize and bind DNA, implying that the MODY1 phenotype is because of a loss of HNF4α function. The effect of loss of function on HNF4α target gene expression was investigated further in embryonic stem cells, which are amenable to genetic manipulation and can be induced to form visceral endoderm. Because the visceral endoderm shares many properties with the liver and pancreatic β-cells, including expression of genes for glucose transport and metabolism, it offers an ideal system to investigate HNF4-dependent gene regulation in glucose homeostasis. By exploiting this system we have identified several genes encoding components of the glucose-dependent insulin secretion pathway whose expression is dependent upon HNF4α. These include glucose transporter 2, and the glycolytic enzymes aldolase B and glyceraldehyde-3-phosphate dehydrogenase, and liver pyruvate kinase. In addition we have found that expression of the fatty acid binding proteins and cellular retinol binding protein also are down-regulated in the absence of HNF4α. These data provide direct evidence that HNF4α is critical for regulating glucose transport and glycolysis and in doing so is crucial for maintaining glucose homeostasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: Increasing evidence suggests that left ventricular remodeling is associated with a shift from fatty acid to glucose metabolism for energy production. The aim of this study was to determine whether left ventricular remodeling with and without late-onset heart failure after myocardial infarction is associated with regional changes in the expression of regulatory proteins of glucose or fatty acid metabolism. METHODS: Myocardial infarction was induced in rats by ligation of the left anterior descending coronary artery (LAD). In infarcted and sham-operated hearts the peri-infarction region (5-mm zone surrounding the region at risk), the interventricular septum and the right ventricular free wall were separated for analysis. RESULTS: At 8 and 20 weeks after LAD ligation, the peri-infarction region and the septum exhibited marked re-expression of atrial natriuretic factor [+252+/-37 and +1093+/-279%, respectively, in the septum (P<0.05)] and of alpha-smooth muscle actin [+34+/-10 and +43+/-14%, respectively, in the septum (P<0.05)]. At 8 weeks, when left ventricular hypertrophy was present without signs of heart failure, myocardial mRNA expression of glucose transporters (GLUT-1 and GLUT-4) was not altered, whereas mRNA expression of medium-chain acyl-CoA dehydrogenase (MCAD) was significantly reduced in the peri-infarction region (-25+/-7%; P<0.05). In hearts exhibiting heart failure 20 weeks after infarct-induction there was a change in all three ventricular regions of both mRNA and protein content of GLUT-1 [+72+/-28 and +121+/-15%, respectively, in the peri-infarction region (P<0.05)] and MCAD [-29+/-9 and -56+/-4%, respectively, in the peri-infarction region (P<0.05)]. CONCLUSION: In rats with large myocardial infarction, progression from compensated remodeling to overt heart failure is associated with upregulation of GLUT-1 and downregulation of MCAD in both the peri-infarction region and the septum.