979 resultados para Glucocorticoid Receptor Polymorphisms


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reduced activity of 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2) plays a role in essential hypertension and the sensitivity of blood pressure to dietary salt. Nonconservative mutations in the coding region are extremely rare and do not explain the variable 11beta-HSD2 activity. We focused therefore on the 5'-regulatory region and identified and characterized the first promoter polymorphisms. Transfections of variants G-209A and G-126A into SW620 cells reduced promoter activity and affinity for activators nuclear factor 1 (NF1) and Sp1. Chromatin immunoprecipitation revealed Sp1, NF1, and glucocorticoid receptor (GR) binding to the HSD11B2 promoter. Dexamethasone induced expression of mRNA and activity of HSD11B2. GR and/or NF1 overexpression increased endogenous HSD11B2 mRNA and activity. GR complexes cooperated with NF1 to activate HSD11B2, an effect diminished in the presence of the G-209A variant. When compared to salt-resistant subjects (96), salt-sensitive volunteers (54) more frequently had the G-209A variant, higher occurrence of alleles A4/A7 of polymorphic microsatellite marker, and higher urinary ratios of cortisol to cortisone metabolites. First, we conclude that the mechanism of glucocorticoid-induced HSD11B2 expression is mainly mediated by cooperation between GR and NF1 on the HSD11B2 promoter and, second, that the newly identified promoter variants reduce activity and cooperation of cognate transcription factors, resulting in diminished HSD11B2 transcription, an effect favoring salt sensitivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The brain cholecystokinin-B/gastrin receptor (CCK-BR) is a major target for drug development because of its postulated role in modulating anxiety, memory, and the perception of pain. Drug discovery efforts have resulted in the identification of small synthetic molecules that can selectively activate this receptor subtype. These drugs include the peptide-derived compound PD135,158 as well as the nonpeptide benzodiazepine-based ligand, L-740,093 (S enantiomer). We now report that the maximal level of receptor-mediated second messenger signaling that can be achieved by these compounds (drug efficacy) markedly differs among species homologs of the CCK-BR. Further analysis reveals that the observed differences in drug efficacy are in large part explained by single or double aliphatic amino acid substitutions between respective species homologs. This interspecies variability in ligand efficacy introduces the possibility of species differences in receptor-mediated function, an important consideration when selecting animal models for preclinical drug testing. The finding that even single amino acid substitutions can significantly affect drug efficacy prompted us to examine ligand-induced signaling by a known naturally occurring human CCK-BR variant (glutamic acid replaced by lysine in position 288; 288E → K). When examined using the 288E → K receptor, the efficacies of both PD135,158 and L-740,093 (S) were markedly increased compared with values obtained with the wild-type human protein. These observations suggest that functional variability resulting from human receptor polymorphisms may contribute to interindividual differences in drug effects.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Glucocorticoids, released in high concentrations from the adrenal cortex during stressful experiences, bind to glucocorticoid receptors in nuclear and peri-nuclear sites in neuronal somata. Their classically known mode of action is to induce gene promoter receptors to alter gene transcription. Nuclear glucocorticoid receptors are particularly dense in brain regions crucial for memory, including memory of stressful experiences, such as the hippocampus and amygdala. While it has been proposed that glucocorticoids may also act via membrane bound receptors, the existence of the latter remains controversial. Using electron microscopy, we found glucocorticoid receptors localized to non-genomic sites in rat lateral amygdala, glia processes, presynaptic terminals, neuronal dendrites, and dendritic spines including spine organelles and postsynaptic membrane densities. The lateral nucleus of the amygdala is a region specifically implicated in the formation of memories for stressful experiences. These newly observed glucocorticoid receptor immunoreactive sites were in addition to glucocorticoid receptor immunoreactive signals observed using electron and confocal microscopy in lateral amygdala principal neuron and GABA neuron soma and nuclei, cellular domains traditionally associated with glucocorticoid immunoreactivity. In lateral amygdala, glucocorticoid receptors are thus also localized to non-nuclear-membrane translocation sites, particularly dendritic spines, where they show an affinity for postsynaptic membrane densities, and may have a specialized role in modulating synaptic transmission plasticity related to fear and emotional memory.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this thesis, two separate single nucleotide polymorphism (SNP) genotyping techniques were set up at the Finnish Genome Center, pooled genotyping was evaluated as a screening method for large-scale association studies, and finally, the former approaches were used to identify genetic factors predisposing to two distinct complex diseases by utilizing large epidemiological cohorts and also taking environmental factors into account. The first genotyping platform was based on traditional but improved restriction-fragment-length-polymorphism (RFLP) utilizing 384-microtiter well plates, multiplexing, small reaction volumes (5 µl), and automated genotype calling. We participated in the development of the second genotyping method, based on single nucleotide primer extension (SNuPeTM by Amersham Biosciences), by carrying out the alpha- and beta tests for the chemistry and the allele-calling software. Both techniques proved to be accurate, reliable, and suitable for projects with thousands of samples and tens of markers. Pooled genotyping (genotyping of pooled instead of individual DNA samples) was evaluated with Sequenom s MassArray MALDI-TOF, in addition to SNuPeTM and PCR-RFLP techniques. We used MassArray mainly as a point of comparison, because it is known to be well suited for pooled genotyping. All three methods were shown to be accurate, the standard deviations between measurements being 0.017 for the MassArray, 0.022 for the PCR-RFLP, and 0.026 for the SNuPeTM. The largest source of error in the process of pooled genotyping was shown to be the volumetric error, i.e., the preparation of pools. We also demonstrated that it would have been possible to narrow down the genetic locus underlying congenital chloride diarrhea (CLD), an autosomal recessive disorder, by using the pooling technique instead of genotyping individual samples. Although the approach seems to be well suited for traditional case-control studies, it is difficult to apply if any kind of stratification based on environmental factors is needed. Therefore we chose to continue with individual genotyping in the following association studies. Samples in the two separate large epidemiological cohorts were genotyped with the PCR-RFLP and SNuPeTM techniques. The first of these association studies concerned various pregnancy complications among 100,000 consecutive pregnancies in Finland, of which we genotyped 2292 patients and controls, in addition to a population sample of 644 blood donors, with 7 polymorphisms in the potentially thrombotic genes. In this thesis, the analysis of a sub-study of pregnancy-related venous thromboses was included. We showed that the impact of factor V Leiden polymorphism on pregnancy-related venous thrombosis, but not the other tested polymorphisms, was fairly large (odds ratio 11.6; 95% CI 3.6-33.6), and increased multiplicatively when combined with other risk factors such as obesity or advanced age. Owing to our study design, we were also able to estimate the risks at the population level. The second epidemiological cohort was the Helsinki Birth Cohort of men and women who were born during 1924-1933 in Helsinki. The aim was to identify genetic factors that might modify the well known link between small birth size and adult metabolic diseases, such as type 2 diabetes and impaired glucose tolerance. Among ~500 individuals with detailed birth measurements and current metabolic profile, we found that an insertion/deletion polymorphism of the angiotensin converting enzyme (ACE) gene was associated with the duration of gestation, and weight and length at birth. Interestingly, the ACE insertion allele was also associated with higher indices of insulin secretion (p=0.0004) in adult life, but only among individuals who were born small (those among the lowest third of birth weight). Likewise, low birth weight was associated with higher indices of insulin secretion (p=0.003), but only among carriers of the ACE insertion allele. The association with birth measurements was also found with a common haplotype of the glucocorticoid receptor (GR) gene. Furthermore, the association between short length at birth and adult impaired glucose tolerance was confined to carriers of this haplotype (p=0.007). These associations exemplify the interaction between environmental factors and genotype, which, possibly due to altered gene expression, predisposes to complex metabolic diseases. Indeed, we showed that the common GR gene haplotype associated with reduced mRNA expression in thymus of three individuals (p=0.0002).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thymic atrophy is known to occur during infections; however, there is limited understanding of its causes and of the cross-talk between different pathways. This study investigates mechanisms involved in thymic atrophy during a model of oral infection by Salmonella enterica serovar Typhimurium (S.typhimurium). Significant death of CD4+CD8+ thymocytes, but not of single-positive thymocytes or peripheral lymphocytes, is observed at later stages during infection with live, but not heat-killed, bacteria. The death of CD4+CD8+ thymocytes is Fas-independent as shown by infection studies with lpr mice. However, apoptosis occurs with lowering of mitochondrial potential and higher caspase-3 activity. The amounts of cortisol, a glucocorticoid, and interferon- (IFN-), an inflammatory cytokine, increase upon infection. To investigate the functional roles of these molecules, studies were performed using Ifn/ mice together with RU486, a glucocorticoid receptor antagonist. Treatment of C57BL/6 mice with RU486 does not affect colony-forming units (CFU), amounts of IFN- and mouse survival; however, there is partial rescue in thymocyte death. Upon infection, Ifn/ mice display higher CFU and lower survival but more surviving thymocytes are recovered. However, there is no difference in cortisol amounts in C57BL/6 and Ifn/ mice. Importantly, the number of CD4+CD8+ thymocytes is significantly higher in Ifn/ mice treated with RU486 along with lower caspase-3 activity and mitochondrial damage. Hence, endogenous glucocorticoid and IFN--mediated pathways are parallel but synergize in an additive manner to induce death of CD4+CD8+ thymocytes during S.typhimurium infection. The implications of this study for host responses during infection are discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

``The goal of this study was to examine the effect of maternal iron deficiency on the developing hippocampus in order to define a developmental window for this effect, and to see whether iron deficiency causes changes in glucocorticoid levels. The study was carried out using pre-natal, post-natal, and pre + post-natal iron deficiency paradigm. Iron deficient pregnant dams and their pups displayed elevated corticosterone which, in turn, differentially affected glucocorticoid receptor (GR) expression in the CA1 and the dentate gyrus. Brain Derived Neurotrophic Factor (BDNF) was reduced in the hippocampi of pups following elevated corticosterone levels. Reduced neurogenesis at P7 was seen in pups born to iron deficient mothers, and these pups had reduced numbers of hippocampal pyramidal and granule cells as adults. Hippocampal subdivision volumes also were altered. The structural and molecular defects in the pups were correlated with radial arm maze performance; reference memory function was especially affected. Pups from dams that were iron deficient throughout pregnancy and lactation displayed the complete spectrum of defects, while pups from dams that were iron deficient only during pregnancy or during lactation displayed subsets of defects. These findings show that maternal iron deficiency is associated with altered levels of corticosterone and GR expression, and with spatial memory deficits in their pups.'' (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The mechanisms by which excessive glucocorticoids cause muscular atrophy remain unclear. We previously demonstrated that dexamethasone increases the expression of myostatin, a negative regulator of skeletal muscle mass, in vitro. In the present study, we tested the hypothesis that dexamethasone-induced muscle loss is associated with increased myostatin expression in vivo. Daily administration (60, 600, 1,200 micro g/kg body wt) of dexamethasone for 5 days resulted in rapid, dose-dependent loss of body weight (-4.0, -13.4, -17.2%, respectively, P <0.05 for each comparison), and muscle atrophy (6.3, 15.0, 16.6% below controls, respectively). These changes were associated with dose-dependent, marked induction of intramuscular myostatin mRNA (66.3, 450, 527.6% increase above controls, P <0.05 for each comparison) and protein expression (0.0, 260.5, 318.4% increase above controls, P <0.05). We found that the effect of dexamethasone on body weight and muscle loss and upregulation of intramuscular myostatin expression was time dependent. When dexamethasone treatment (600 micro g. kg-1. day-1) was extended from 5 to 10 days, the rate of body weight loss was markedly reduced to approximately 2% within this extended period. The concentrations of intramuscular myosin heavy chain type II in dexamethasone-treated rats were significantly lower (-43% after 5-day treatment, -14% after 10-day treatment) than their respective corresponding controls. The intramuscular myostatin concentration in rats treated with dexamethasone for 10 days returned to basal level. Concurrent treatment with RU-486 blocked dexamethasone-induced myostatin expression and significantly attenuated body loss and muscle atrophy. We propose that dexamethasone-induced muscle loss is mediated, at least in part, by the upregulation of myostatin expression through a glucocorticoid receptor-mediated pathway.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Patulin (PAT) is a mycotoxin produced by various species of fungi, with Penicillium expansum being the most commonly occurring. Apples and apple products are the main sources of PAT contamination. This mycotoxin has been shown to induce toxic effects in animals, a few of which include reproductive toxicity and interference with the endocrine system. Here the endocrine disrupting potential of PAT has been investigated in vitro to identify disruption at the level of oestrogen, androgen, progestagen and glucocorticoid nuclear receptor transcriptional activity, and to assess interferences in estradiol, testosterone and progesterone steroid hormone production. At the receptor level, 0.5-5000ng/ml (0.0032-32μM) PAT did not appear to induce any specific (ant) agonistic responses in reporter gene assays (RGAs); however, nuclear transcriptional activity was affected. A >6 fold increase in the glucocorticoid receptor transcriptional activity was observed following treatment with 5000ng/ml PAT in the presence of cortisol. At the hormone production level, despite cytotoxicity being observed after treatment with 5000ng/ml PAT, estradiol levels had increased >2 fold. At 500ng/ml PAT treatment, an increase in progesterone and a decrease in testosterone production were observed. The findings of this study could be considered in assessing the health risks following exposure to PAT.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tese de doutoramento, Ciências Biomédicas (Neurociências), Universidade de Lisboa, Faculdade de Medicina, 2014

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Contexte - La variation interindividuelle de la réponse aux corticostéroïdes (CS) est un problème important chez les patients atteints de maladies inflammatoires d’intestin. Ce problème est bien plus accentué chez les enfants avec la prévalence de la corticodépendance extrêmement (~40 %) élevée. La maladie réfractaire au CS a des répercussions sur le développement et le bien-être physique et psychologique des patients et impose des coûts médicaux élevés, particulièrement avec la maladie active comparativement à la maladie en rémission, le coût étant 2-3 fois plus élevé en ambulatoire et 20 fois plus élevé en hôpital. Il est ainsi primordial de déterminer les marqueurs prédictifs de la réponse aux CS. Les efforts précédents de découvrir les marqueurs cliniques et démographiques ont été équivoques, ce qui souligne davantage le besoin de marqueurs moléculaires. L'action des CS se base sur des processus complexes déterminés génétiquement. Deux gènes, le ABCB1, appartenant à la famille des transporteurs transmembraneaux, et le NR3C1, encodant le récepteur glucocorticoïde, sont des éléments importants des voies métaboliques. Nous avons postulé que les variations dans ces gènes ont un rôle dans la variabilité observée de la réponse aux CS et pourraient servir en tant que les marqueurs prédictifs. Objectifs - Nous avons visé à: (1) examiner le fardeau de la maladie réfractaire aux CS chez les enfants avec la maladie de Crohn (MC) et le rôle des caractéristiques cliniques et démographiques potentiellement liés à la réponse; (2) étudier l'association entre les variantes d'ADN de gène ABCB1 et la réponse aux CS; (3) étudier les associations entre les variantes d'ADN de gène NR3C1 et la réponse aux CS. Méthodes - Afin d’atteindre ces objectifs, nous avons mené une étude de cohorte des patients recrutés dans deux cliniques pédiatriques tertiaires de gastroentérologie à l’Ottawa (CHEO) et à Montréal (HSJ). Les patients avec la MC ont été diagnostiqués avant l'âge de 18 ans selon les critères standard radiologiques, endoscopiques et histopathologiques. La corticorésistance et la corticodépendance ont été définies en adaptant les critères reconnus. L’ADN, acquise soit du sang ou de la salive, était génotypée pour des variations à travers de gènes ABCB1 et NR3C1 sélectionnées à l’aide de la méthodologie de tag-SNP. La fréquence de la corticorésistance et la corticodépendance a été estimée assumant une distribution binomiale. Les associations entre les variables cliniques/démographiques et la réponse aux CS ont été examinées en utilisant la régression logistique en ajustant pour des variables potentielles de confusion. Les associations entre variantes génétiques de ABCB1 et NR3C1 et la réponse aux CS ont été examinées en utilisant la régression logistique assumant différents modèles de la transmission. Les associations multimarqueurs ont été examinées en utilisant l'analyse de haplotypes. Les variantes nongénotypées ont été imputées en utilisant les données de HAPMAP et les associations avec SNPs imputés ont été examinées en utilisant des méthodes standard. Résultats - Parmi 645 patients avec la MC, 364 (56.2%) ont reçu CS. La majorité de patients étaient des hommes (54.9 %); présentaient la maladie de l’iléocôlon (51.7%) ou la maladie inflammatoire (84.6%) au diagnostic et étaient les Caucasiens (95.6 %). Huit pourcents de patients étaient corticorésistants et 40.9% - corticodépendants. Le plus bas âge au diagnostic (OR=1.34, 95% CI: 1.03-3.01, p=0.040), la maladie cœxistante de la région digestive supérieure (OR=1.35, 95% CI: 95% CI: 1.06-3.07, p=0.031) et l’usage simultané des immunomodulateurs (OR=0.35, 95% CI: 0.16-0.75, p=0.007) ont été associés avec la corticodépendance. Un total de 27 marqueurs génotypés à travers de ABCB1 (n=14) et NR3C1 (n=13) ont été en l'Équilibre de Hardy-Weinberg, à l’exception d’un dans le gène NR3C1 (rs258751, exclu). Dans ABCB1, l'allèle rare de rs2032583 (OR=0.56, 95% CI: 0.34-0.95, p=0.029) et génotype hétérozygote (OR=0.52, 95% CI: 0.28-0.95 p=0.035) ont été négativement associes avec la dépendance de CS. Un haplotype à 3 marqueurs, comprenant le SNP fonctionnel rs1045642 a été associé avec la dépendance de CS (p empirique=0.004). 24 SNPs imputés introniques et six haplotypes ont été significativement associés avec la dépendance de CS. Aucune de ces associations n'a cependant maintenu la signification après des corrections pour des comparaisons multiples. Dans NR3C1, trois SNPs: rs10482682 (OR=1.43, 95% CI: 0.99-2.08, p=0.047), rs6196 (OR=0.55, 95% CI: 0.31-0.95, p=0.024), et rs2963155 (OR=0.64, 95% CI: 0.42-0.98, p=0.039), ont été associés sous un modèle additif, tandis que rs4912911 (OR=0.37, 95% CI: 0.13-1.00, p=0.03) et rs2963156 (OR=0.32, 95% CI: 0.07-1.12, p=0.047) - sous un modèle récessif. Deux haplotypes incluant ces 5 SNPs (AAACA et GGGCG) ont été significativement (p=0.006 et 0.01 empiriques) associés avec la corticodépendance. 19 SNPs imputés ont été associés avec la dépendance de CS. Deux haplotypes multimarqueurs (p=0.001), incluant les SNPs génotypés et imputés, ont été associés avec la dépendance de CS. Conclusion - Nos études suggèrent que le fardeau de la corticodépendance est élevé parmi les enfants avec le CD. Les enfants plus jeunes au diagnostic et ceux avec la maladie coexistante de la région supérieure ainsi que ceux avec des variations dans les gènes ABCB1 et NR3C1 étaient plus susceptibles de devenir corticodépendants.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Retinoid X receptors (RXRs) are important transcriptional nuclear hormone receptors, acting as either homodimers or the binding partner for at least one fourth of all the known human nuclear receptors. Functional nongenomic effects of nuclear receptors are poorly understood; however, recently peroxisome proliferator-activated receptor (PPAR) gamma, PPARbeta, and the glucocorticoid receptor have all been found active in human platelets. Human platelets express RXRalpha and RXRbeta. RXR ligands inhibit platelet aggregation and TXA(2) release to ADP and the TXA(2) receptors, but only weakly to collagen. ADP and TXA(2) both signal via the G protein, Gq. RXR rapidly binds Gq but not Gi/z/o/t/gust in a ligand-dependent manner and inhibits Gq-induced Rac activation and intracellular calcium release. We propose that RXR ligands may have beneficial clinical actions through inhibition of platelet activation. Furthermore, our results demonstrate a novel nongenomic mode for nuclear receptor action and a functional cross-talk between G-protein and nuclear receptor signaling families.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Retinoid X receptors (RXRs) are important transcriptional nuclear hormone receptors, acting as either homodimers or the binding partner for at least one fourth of all the known human nuclear receptors. Functional nongenomic effects of nuclear receptors are poorly understood; however, recently peroxisome proliferator-activated receptor (PPAR) gamma, PPAR beta, and the glucocorticoid receptor have all been found active in human platelets. Human platelets express RXR alpha, and RXR beta. RXR ligands inhibit platelet aggregation and TXA(2) release to ADP and the TXA(2) receptors, but only weakly to collagen. ADP and TXA(2) both signal via the G protein, Gq. RXR rapidly binds Gq but not Gi/z/o/t/gust in a ligand-dependent manner and inhibits Gq-induced Rac activation and intracellular calcium release. We propose that RXR ligands may have beneficial clinical actions through inhibition of platelet activation. Furthermore, our results demonstrate a novel nongenomic mode for nuclear receptor action and a functional cross-talk between G-protein and nuclear receptor signaling families. (C) 2007 by The American Society of Hematology.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Maternal pancreatic islets undergo a robust increase of mass and proliferation during pregnancy, which allows a compensation of gestational insulin resistance. Studies have described that this adaptation switches to a low proliferative status after the delivery. The mechanisms underlying this reversal are unknown, but the action of glucocorticoids (GCs) is believed to play an important role because GCs counteract the pregnancy-like effects of PRL on isolated pancreatic islets maintained in cell culture. Here, we demonstrate that ERK1/2 phosphorylation (phospho-ERK1/2) is increased in maternal rat islets isolated on the 19th day of pregnancy. Phospho-ERK1/2 status on the 3rd day after delivery (L3) rapidly turns to values lower than that found in virgin control rats (CTL). MKP-1, a protein phosphatase able to dephosphorylate ERK1/2, is increased in islets from L3 rats. Chromatin immunoprecipitation assay revealed that binding of glucocorticoid receptor (GR) to MKP-1 promoter is also increased in islets from L3 rats. In addition, dexamethasone (DEX) reduced phospho-ERK1/2 and increased MKP-1 expression in RINm5F and MIN-6 cells. Inhibition of transduction with cycloheximide and inhibition of phosphatases with orthovanadate efficiently blocked DEX-induced downregulation of phospho-ERK1/2. In addition, specific knockdown of MKP-1 with siRNA suppressed the downregulation of phosphoERK1/2 and the reduction of proliferation induced by DEX. Altogether, our results indicate that downregulation of phospho-ERK1/2 is associated with reduction in proliferation found in islets of early lactating mothers. This mechanism is probably mediated by GC-induced MKP-1 expression.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Human nerve growth factor-induced B (NGFI-B) is a member of the NR4A subfamily of orphan nuclear receptors (NRs). Lacking identified ligands, orphan NRs show particular co-regulator proteins binding properties, different from other NRs, and they might have a non-classical quaternary organization. A body of evidence suggests that NRs recognition of and binding to ligands, DNA, homo- and heterodimerization partners and co-regulator proteins involve significant conformational changes of the NR ligand-binding domains (LBDs). To shed light on largely unknown biophysical properties of NGFI-B, here we studied structural organization and unfolding properties of NGFI-B ligand (like)-binding domain induced by chemical perturbation. Our results show that NGFI-B LBD undergoes a two-state guanidine hydrochloride (GndHCl) induced denaturation, as judged by changes in the a-helical content of the protein monitored by circular dichroism spectroscopy (CD). In contrast, changes in the tertiary structure of NGFI-B LBD, reported by intrinsic fluorescence, reveal a clear intermediate state. Additionally, SAXS results demonstrate that the intermediate observed by intrinsic fluorescence is a partially folded homodimeric structure, which further unfolds without dissociation at higher GndHCl concentrations. This partially unfolded dimeric assembly of NGFI-B LBD might resemble an intermediate that this domain access momentarily in the native state upon interactions with functional partners. (C) 2008 Elsevier B.V. All rights reserved.