975 resultados para Globular pore volume
Resumo:
Manganese-modified mesoporous MCM-41 molecular sieves were synthesized at the absence of alkaline metal ions under mild alkaline condition using cetylpyridinium bromide surfactant as a template, and characterized with X-ray diffraction, N-2 adsorption, transmission electron microscopy, electron spin resonance (ESR), and nuclear magnetic resonance (NMR) spectroscopies. The synthesized MnMCM-41 has a high pore volume of 1.30 cm(3) g(-1) with a corresponding surface area of 1510 m(2) g(-1). The ESR and Si-29 MAS NMR spectra revealed the presence of framework manganese ions in either the as-synthesized or calcined forms. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Nanostructured materials are central to the evolution of future electronics and biomedical applications amongst other applications. This thesis is focused on developing novel methods to prepare a number of nanostructured metal oxide particles and films by a number of different routes. Part of the aim was to see how techniques used in nanoparticle science could be applied to thin film methods to develop functional surfaces. Wet-chemical methods were employed to synthesize and modify the metal oxide nanostructures (CeO2 and SiO2) and their structural properties were characterized through advanced X-ray diffraction, electron microscopy, photoelectron spectroscopy and other techniques. Whilst particulates have uses in many applications, their attachment to surfaces is of importance and this is frequently challenging. We examined the use of block copolymer methods to form very well defined metal oxide particulate-like structures on the surface of a number of substrates. Chapter 2 describes a robust method to synthesize various sized silica nanoparticles. As-synthesized silica nanoparticles were further functionalized with IR-820 and FITC dyes. The ability to create size controlled nanoparticles with associated (optical) functionality may have significant importance in bio-medical imaging. Thesis further describes how non-organic modified fluorescent particles might be prepared using inorganic oxides. A study of the concentrations and distributions of europium dopants within the CeO2 nanoparticles was undertaken and investigated by different microscopic and spectroscopic techniques. The luminescent properties were enhanced by doping and detailed explanations are reported. Additionally, the morphological and structural evolution and optical properties were correlated as a function of concentrations of europium doping as well as with further annealing. Further work using positron annihilation spectroscopy allowed the study of vacancy type defects formed due to europium doping in CeO2 crystallites and this was supported by complimentary UV-Vis spectra and XRD work. During the last few years the interest in mesoporous silica materials has increased due to their typical characteristics such as potential ultra-low dielectric constant materials, large surface area and pore volume, well-ordered and uniform pores with adjustable pores between 2 and 50 nm. A simple, generic and cost-effective route was used to demonstrate the synthesis of 2D mesoporous silica thin films over wafer scale dimensions in chapter 5. Lithographic resist and in situ hard mask block copolymer followed by ICP dry etching were used to fabricate mesoporous silica nanostructures. The width of mesoporous silica channels can be varied by using a variety of commercially available lithographic resists whereas depth of the mesoporous silica channels can be varied by altering the etch time. The crystal structure, morphology, pore arrangement, pore diameters, thickness of films and channels were determined by XRD, SEM, ellipsometry and the results reported. This project also extended work towards the study of the antimicrobial study of nanopatterned silver nanodot arrays formed using the block copolymer approach defined above. Silver nanodot arrays were successfully tested for antimicrobial activity over S. aureus and P. aeruginosa biofilms and results shows silver nanodots has good antimicrobial activity for both S. aureus and P. aeruginosa biofilms. Thus, these silver nanodot arrays shows a potential to be used as a substitute for the resolution of infection complications in many areas.
Resumo:
Gel-derived CaO-SiO2 binary glasses of CaO mole fractions 0. 2, 0.3 and 0. 4 have been prepared and characterised. Pore diameter specific pore volume, skeletal density and porosity were found to increase with increasing CaO-content, whereas a concomitant decrease in specific surface area was observed. Si-29 NMR indicated that the 0.2 CaO mole fraction glass consisted of higly polymerized Q(4) and Q(3) silicate species, with some Q(2) units. With increasing CaO mole fraction, these silicate species became progressively depolymerised such that isolated SiO4 tetrahedra were detected within the 0.4 CaO glass matrix. Unusually, the glasses retained a proportion of Q(4) and Q(3) species as the CaO mole fraction was increased. All glass formulations exhibited in vitro bioactivity. The rate of hydroxyapatite precipitation followed the order 0.2 CaO > 0.4 CaO > > 0.3 CaO, an effect that is attributed to differences in the rate of dissolution of calcium from these glasses. This, in turn, appears to be dependent upon the proportion of Ca 21 participating in the formation of the glassy network.
Resumo:
This paper reports an experimental investigation of converting waste medium density fibreboard (MDF) sawdust into chars and activated carbon using chemical activation and thermal carbonisation processes. The MDF sawdust generated during the production of architectural mouldings was characterised and found to have unique properties in terms of fine particle size and high particle density. It also has a high content of urea formaldehyde resin used as a binder in the manufacturing of MDF board. Direct thermal carbonisation and chemical activation of the sawdust by metal impregnation and acid (phosphoric acid) treatment prior to pyrolysis treatment were carried out. The surface morphology of the raw dust, its chars and activated carbon were examined using scanning electron microscopy (SEM). Adsorptive properties and total pore volume of the materials were also analysed using the BET nitrogen adsorption method. Liquid adsorption of a reactive dye (Levafix Brilliant red E-4BA) by the derived sawdust carbon was investigated in batch isothermal adsorption process and the results compared to adsorption on to a commercial activated carbon (Filtrasorb F400). The MDF sawdust carbon exhibited in general a very low adsorption capacity towards the reactive dye, and physical characterisation of the carbon revealed that the conventional chemical activation and thermal carbonisation process were ineffective in developing a microporous structure in the dust particles. The small size of the powdery dust, the high particle density, and the presence of the urea formaldehyde resin all contributed to the difficulty of developing a proper porous structure during the thermal and chemical activation process. Finally, activation of the dust material in a consolidated form (cylindrical pellet) only achieved very limited improvement in the dye adsorption capacity. This original study, reporting some unexpected outcomes, may serve as a stepping-stone for future investigations of recycle and reuse of the waste MDF sawdust which is becoming an increasing environmental and cost liability. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The ionic liquid (IL) 1-butyl-3-methylimidazolium chloride was used as a drying control chemical additive in the synthesis of silica sol-gel materials with and without methanol as a co-solvent. The resulting gels were characterized by using thermogravimetric analysis, differential scanning calorimetry, infrared spectroscopy and water sorption kinetics. Calcined gels were analyzed using scanning electron microscopy and nitrogen adsorption isotherms for surface area and pore volume determination. Non-calcined gels were monolithic and showed general cloudiness with lesser degrees observed at higher IL volumes. Calcinations resulted in the formation of powders with increased available surface area as the amount of IL volume was increased. This is consistent with an increase in respective pore volume but a general decrease in average pore size. The resulting materials exhibited conventional structural microdomains, in contrast to periodicity reported when other ionic liquids were used as templates.
Resumo:
The central theme of this investigation is to evaluate the feasibility of using bituminous coal as a precursor material for the production of chars and activated carbons using physical and chemical activation processes. The chemical activation process was accomplished by impregnating the raw materials with different dehydrating agents in different ratios and concentrations, prior to heat treatment (ZnCl2, KCl, KOH, NaOH and Fe2(SO4)3·xH2O). Steam activation of the precursor material was adopted for the preparation of activated carbon using physical activation technology. Different types of bituminous coal; namely, contaminated Columbian (contaminated with pet. coke), pure Columbian, Venezuelan and New Zealand bituminous coal were used in the production processes. BET surface area, micropore area, pore size distribution and total pore volume of the chars and activated carbons were determined from N2 adsorption/desorption isotherm, measured at 77 K. Charring conditions, charring temperature of 800 °C and charring time of 4 h, proved to be the optimum conditions for preparing chars. Contaminated Columbian were found to be the best precursor material for the production of char with reasonable physical characteristics (surface area = 138.1 m2 g-1 and total pore volume of 8.656 × 10-0.2 cm3 g-1). An improvement in the physical characteristics of the activated carbons was obtained upon the treatment of coal with dehydrating agents. Contaminated Columbian treated with 10 wt% ZnCl2 displayed the highest surface area and total pore volume (surface area = 231.5 m2 g-1 and total pore volume = 0.1227 cm3 g-1) with well-developed microporisity (micropore area = 92.3 m2 g-1). Venezuelan bituminous coal using the steam activation process was successful in producing activated carbon with superior physical characteristics (surface area = 863.50 m2 g-1, total pore volume = 0.469 cm3 g-1 and micropore surface area = 783.58 m2 g-1).
Resumo:
Natural Bulgarian clinoptilolite from the south-eastern Rhodopes mountain was modified through treatment with hydrochloric acid with various normality, both single and repeatedly, as well as through a charring of a preliminary obtained NH4-form. The parameters concerning the uptake of the ion-exchangeable cations (Ca2+, Na+ and K+), as well as the uptake of aluminium from the natural material were calculated on the basis of the chemical contents. The highest extent of cations removal was attained in the case of the treatment with NH4Cl solution, while the highest aluminium deficiency was established in the samples treated by hydrochloric acid solutions with increasing concentration. Sulfur dioxide adsorption on the obtained decationised and dealuminised samples was studied according to the frontal-dynamic method. The parameters of the breakthrough curves, namely breakthrough time, saturation time and some of the statistical moments of the curve distribution, were determined. The dynamic adsorption capacities were also specified. Comparing the momentum values it was established that as a result of the natural zeolite treatment with NH4Cl and with low concentrated acid, the diffusion resistance decreases because of the dominant exchange of the presenting exchangeable cations in the samples with the smaller size protons and because of enlargement of the pores opening. Intensified dealuminisation was observed when more concentrated acid solutions are used. The capacity is enhanced, probably due to an increase in the total pore volume.
Resumo:
Porous carbon aerogels are prepared by polycondensation of resorcinol (R) and formaldehyde (F)catalyzed by sodium carbonate (C) followed by carbonization of the resultant aerogels at 800? in an inert atmosphere. The porous texture of the carbons has been adjusted by the change of the molar ratio of resorcinol to catalyst (R/C) in the gel precursors in the range of 100 to 500. The porous structure of the aerogels and carbon aerogels are characterized by N2 adsorption-desorption measurements at 77 K. It is found that total pore volume and average pore diameter of the carbons increase with increase in the R/C ratio of the gel precursors.The prepared carbon aerogels are used as active materials in fabrication of composite carbon electrodes. The electrochemical performance of the electrodes has been tested by using them as cathodes in a Li/O2 cell. Through the galvanostatic charge/discharge measurements, it is found that with an increase of R/C ratio, the specific capacity of the Li/O2 cell fabricated from the carbon aerogels increases from 716 to 2077 charge/discharge cycles indicate that the carbon samples possess excellent stability on cycling.
Resumo:
Organic aerogels were synthesized by sol–gel polymerization of resorcinol (R) with formaldehyde (F) catalyzed by sodium carbonate (C) followed by vacuum drying. The influence of the resorcinol/sodium carbonate ratio (R/C) on the porous structure of the resultant aerogels was investigated. The nitrogen adsorption–desorption measurements show that the aerogels possess a well developed porous structure and mesoporosity was found to increase with increasing the R/C ratio. Carbon aerogels were obtained by carbonization of RF aerogels. The carbonization temperature impacts the microstructure of the aerogels by pore transformations during carbonization probably due to the formation of micropores and shrinkage of the gel structure. The results showed that a temperature of 1073 Kis more effective in the development of the pore structure of the gel. Activated carbon aerogels were obtained from the CO2 activation of carbon aerogels. Activation results in an increase in the number of both micropores and mesopores, indicative of pore creation in the structure of the carbon. Activation at higher temperatures results in a higher degree of burn off and increases the pore volume and the surface area remarkably without change of the basic porous structure, pore size, and pore size distribution.
Resumo:
Porous carbon aerogels are prepared by polycondensation of resorcinol and formaldehyde catalyzed by sodium carbonate followed by carbonization of the resultant aerogels in an inert atmosphere. Pore structure of carbon aerogels is adjusted by changing the molar ratio of resorcinol to catalyst during gel preparation and also pyrolysis under Ar and activation under CO2 atmosphere at different temperatures. The prepared carbons are used as active materials in fabrication of composite carbon electrodes. The electrochemical performance of the electrodes has been tested in a Li/O2 cell. Through the galvanostatic charge/discharge measurements, it is found that the cell performance (i.e. discharge capacity and discharge voltage) depends on the morphology of carbon and a combined effect of pore volume, pore size and surface area of carbon affects the storage capacity. A Li/O2 cell using the carbon with the largest pore volume (2.195cm3/g) and a wide pore size (14.23 nm) showed a specific capacity of 1290mAh g-1.
Resumo:
Organic gels have been synthesized by sol–gel polycondensation of phenol (P) and formaldehyde (F) catalyzed by sodium carbonate (C). The effect of synthesis parameters such as phenol/catalyst ratio (P/C), solvent exchange liquid and drying method, on the porous structure of the gels have been investigated. The total and mesopore volumes of the PF gels increased with increasing P/C ratio in the range of P/C B 8, after this both properties started to decrease with P/C ratio for P/C[8 and the gel with P/C = 8 showed the highest total and mesopore volumes of 1.281 and 1.279 cm3 g-1 respectively. The gels prepared by freeze drying possessed significantly higher porosities than the vacuum dried gels. The pore volume and average pore diameter of the freeze dried gels were significantly higher than those of the vacuum dried gels. T-butanol emerged as the preferred solvent for the removal of water from the PF hydrogel prior to drying, as significantly higher pore volumes and specific surface areas were obtained in the corresponding dried gels. The results showed that freeze drying with t-butanol and lower P/C ratios were favourable conditions for the synthesis of highly mesoporous phenol–formaldehyde gels.
Resumo:
The natural zeolite obtained from the Sivas-Yavu region in Turkey and iron modified forms were studied for the decomposition of N2O and selective catalytic reduction of N2O with NH3. The natural and iron modified zeolites were characterised by XRD, SEM, H-2-TPR, NH3-TPD and low temperature nitrogen sorption. The effect iron loading, precursor and valency on the catalytic performance of catalysts were studied. The catalytic activity of the zeolites increased up to about 7.0 wt.% Fe. Above this value, the activity decreased as a result of a reduction in the surface area and pore volume of the zeolite. The highest catalytic activity was observed using catalysts prepared with FeCl2 due to the formation of more reducible iron species in the zeolites. When FeSO4 was used as the iron precursor, sulphate remained on the surface even after extensive washing resulting in a decrease in the N2O decomposition activity and a shift the N2O reduction temperature to higher values. Since the natural and iron exchanged natural zeolites prepared using FeCl2 have comparable activity with synthetic zeolites, the offer a promising alternative catalyst for the abatement of N2O, particularly for the selective reduction of N2O with NH3. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Particulate colloids often occur together with proteins in sewage-impacted water. Using Bovine Serum Albumin (BSA) as a surrogate for protein in sewage, column experiments investigating the capacity of iron-oxide coated sands to remove latex microspheres from water revealed that microsphere attenuation mechanisms depended on antecedent BSA coverage. Dual pulse experiment (DPE) results suggested that where all BSA was adsorbed, subsequent multiple pore volume microsphere breakthrough curves reflected progressively reduced colloid deposition rates with increasing adsorbed BSA content. Modelling colloid responses suggested adsorption of 1 µg BSA generated the same response as blockage by between 7.1x108 and 2.3x109 deposited microspheres. By contrast, microsphere responses in DPEs where BSA coverage of the deposition sites approached/ reached saturation revealed the coated sand maintained a finite capacity to attenuate microspheres, even when incapable of further BSA adsorption. Subsequent microsphere breakthrough curves demonstrated the matrix’s colloid attenuation capacity progressively increased with continued microsphere deposition. Experimental findings suggested BSA adsorption on the sand surface approaching/ reaching saturation generated attractive deposition sites for colloids, which became progressively more attractive with further colloid deposition (filter ripening). Results demonstrate that adsorption of a single type of protein may either enhance or inhibit colloid mobility in saturated porous media.
Resumo:
Two different natural zeolites having different phase compositions were obtained from different regions of Turkey and modified by ion-exchange (0.5 M NH4NO3) and acid leaching using 1 M HCl. The natural and modified samples were treated at low temperature (LT), high temperature (HT) and steam (ST) conditions and characterised by XRF, XRD, BET, FTIR, DR-UV-Vis, NH3-TPD and TGA. Ion-exchange with NH4+ of natural zeolites results in the exchange of the Na+ and Ca2+ cations and the partial exchange of the Fe3+ and Mg2+ cations. However, steam and acidic treatments cause significant dealumination and decationisation, as well as loss of crystalline, sintering of phases and the formation of amorphous material. The presence of mordenite and quartz phases in the natural zeolites increases the stability towards acid treatment, whereas the structure of clinoptilolite-rich zeolites is mostly maintained after high temperature and steam treatments. The natural and modified zeolites treated at high temperature and in steam were found to be less stable compared with synthetic zeolites, resulting in a loss of crystallinity, a decrease in the surface area and pore volume, a decrease in the surface acidity as well as dealumination, and decationisation. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
A new mesoporous carbon (MCSG60) was developed using an inexpensive commercial mesoporous silica gel as a template and sucrose as the carbon source. The surface area, porosity and density of the carbon were determined. The material possesses a high specific surface area and pore volume accessible for most typical aqueous pollutants. The adsorbent material was tested in a batch dye adsorption system. The behaviour of three reactive dyes adsorbed onto MCSG60 was evaluated (Naphthol Blue Black, NBB; Reactive Black 5, RB5; and Remazol Brilliant Blue R, RBBR). The maximum adsorption capacities obtained for the dyes were: 270. mg/g for NBB; 270. mg/g for RB5; and 280. mg/g for RBBR. Kinetic studies indicated that the adsorption process onto the mesoporous carbon was rapid and that equilibrium was reached in less than 1. h for all the dye systems investigated. Further batch experiments showed MCSG60 successfully adsorbed the dyes over a wide pH range and at low adsorbate concentration. The adsorption potential of MCSG60 for dye removal was further evaluated using a fixed-bed adsorption column. © 2013 Elsevier B.V.