929 resultados para Glassy-carbon electrode
Resumo:
Pyrolytic graphite electrodes (PGE) were modified into dopamine solutions using phosphate buffer solutions, pH 10 and 6.5, as supporting electrolyte. The modification process involved a previous anodization of the working electrode at +1. 5 V into 0. 1 mol-L-1 NaOH followed by other anodization step, in the same experimental conditions, into dopamine (DA) solutions. pH of the supporting electrolyte performed an important role in the production of a superficial melanin polymeric film, which permitted the simultaneous detection of ascorbic acid (AA), (DA) and uric acid (UA), Delta EAA-DA = 222 mV-, Delta EAA-UA = 360 mV and Delta EDA-UA=138mV, avoiding the superficial poisoning effects. The calculated detection limits were: 1.4 x 10(-6) mol L-1 for uric acid, 1.3x10-(5) molL(-1) for ascorbic acid and 1.1 X 10(-7) mol L-1 for dopamine, with sensitivities of (7.7 +/- 0.5), (0.061 +/- 0.001) and (9.5 +/- 0.05)A mol(-1) cm(-2), respectively, with no mutual interference. Uric acid was determined in urine, blood and serum human samples after dilution in phosphate buffer and no additional sample pre-treatment was necessary. The concentration of uric acid in urine was higher than the values found in blood and serum and the recovery tests (92-102%) indicated that no matrix effects were observed. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A copper phthalocyanine/multiwalled carbon nanotube film-modified glassy carbon electrode has been used for the determination of the herbicide glyphosate (Gly) at -50 mV vs. SCE by electrochemical oxidation using differential pulse voltamtnetry (DPV). Cyclic voltammetry and electrochemical impedance spectroscopy showed that Gly is adsorbed on the metallic centre of the copper phthalocyanine molecule, with formation of Gly-copper ion complexes. An analytical method was developed using DPV in pH 7.4 phosphate buffer solution, without any pretreatment steps: Gly was determined in the concentration range of 0.83-9.90 mu mol L(-1), with detection limit 12.2 nmol L(-1) (2.02 mu g L(-1))
Resumo:
A cathodically pretreated boron-doped diamond electrode was used for the simultaneous anodic determination of ascorbic acid (AA) and caffeine (CAF) by differential pulse voltammetry Linear calibration curves (r = 0 999) were obtained from 1 9 x 10(-5) to 2 I x 10(-4) mol L(-1) for AA and from 9 7 x 10(-6) to 1 1 x 10-4 mol L(-1) for CAF. with detection limits of 19 wool L(-1) and 7 0 mu nol L(-1). respectively This method was successfully applied for the determination of AA and CAF in pharmaceutical formulations. with results equal to those obtained using a HPLC reference method
Resumo:
A simple and highly selective electrochemical method was developed for the single or simultaneous determination of paracetamol (N-acetyl-p-aminophenol, acetaminophen) and caffeine (3,7-dihydro-1,3,7-trimethyl-1H-purine-2,6-dione) in aqueous media (acetate buffer, pH 4.5) on a boron-doped diamond (BDD) electrode using square wave voltammetry (SWV) or differential Pulse voltammetry (DPV). Using DPV with the cathodically pre-treated BDD electrode, a separation of about 550 mV between the peak oxidation potentials Of paracetamol and caffeine present in binary mixtures was obtained. The calibration curves for the simultaneous determination of paracetamol and caffeine showed an excellent linear response, ranging from 5.0 x 10(-7) mol L(-1) to 8.3 x 10(-7) mol L(-1) for both compounds. The detection limits for the simultaneous determination of paracetamol and caffeine were 4.9 x 10(-7) mol L-1 and 3.5 x 10(-8) mol L(-1), respectively. The proposed method Was Successfully applied in the simultaneous determination of paracetamol and caffeine in several pharmaceutical formulations (tablets), with results similar to those obtained using a high-performance liquid chromatography method (at 95% confidence level). (C) 2008 Elsevier BY. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Glassy carbon can be manufactured practically without pores, named Monolithic Vitreous Carbon (MVC) or presenting up to 98% in transport pore volume, foam form, denominated Reticulated Vitreous Carbon (RVC). The glassy carbon processing is affected by some processing parameters, among them it can be cited the resin viscosity. The present work involves the optimization of RVC manufacture by monitoring the polyurethane (PU) foam impregnation with furfuryl alcohol resin with different viscosity values, which were obtained by dilution of the resin with different amounts of furfuryl alcohol. The resin samples used in the PU impregnation were characterized by thermal and rheological analyses. These results were correlated with scanning electron microscopy observations and compression test results of the impregnated polyurethane foam. The results show that the rheological behavior of the resin has significant influence on the polymerization step, affecting the homogeneity of impregnated foam and, consequently, its final properties, mainly the mechanical one. The impregnated foam prepared with the furfuryl alcohol resin diluted with 10% of furfuryl alcohol (eta = 11.4 Pa s) showed higher compression values (0.26 MPa). (c) 2007 Wiley Periodicals, Inc.
Resumo:
This work describes an electroanalytical method for determining gold(I) thiomalate, aurothiomalate, widely used for treatment of reumatoid arthiritis, using a screen-printed carbon electrode (SPCE). Aurothiomalate (AuTM) was determined indirectly at the same electrode by accumulating it first at -1.5 V vs. printed carbon. At this potential in the adsorbed state, the AuTM is reduced to Au(0), which is then oxidized at two steps at -0.22 V and +0.54 V on SPCE. Using optimized conditions of 60 s deposition time, -1.5 V (vs. printed carbon) accumulation potential, 100 mV s(-1) scan rate, linear calibration graphs can be obtained by monitoring the peak at +0.54 V for AuTM in HCl 0.1 mol L-1 from 1.43 x 10(-6) to 1.55 x 10(-4) mol L-1. A limit of detection obtained was 6.50 x 10(-7) mol L-1, and the relative standard deviation from five measurements of 3.0 x 10(-5) mol L-1 AuTM is 4.5%. The method was successfully applied for AuTM determination in human urine sample.
Resumo:
A rapid and simple method for procaine determination was developed by flow injection analysis (FIA) using a screen-printed carbon electrode (SPCE) as amperometric detector. The present method is based on the amine/hydroxylamine oxidation from procaine monitored at 0.80 V on SPCE in sodium acetate solution pH 6.0. Using the best experimental conditions assigned as: pH 6.0, flow rate of 3.8 mL min(-1), sample volume of 100 mu L and analytical path of 30 cm it is possible to construct a linear calibration curve from 9.0 x 10(-6) to 1.0 x 10(-4) mol L-1. The relative standard deviation for 5.0 x 10(-5) mol L-1 procaine (15 repetitions using the same electrode) is 3.2% and detection limit calculated is 6.0 x 10(-6) mol L-1. Recoveries obtained for procaine gave a mean values from 94.8 to 102.3% and an analytical frequency of 36 injections per hour was achieved. The method was successfully applied for the determination of procaine in pharmaceutical formulation without any pre-treatment, which are in good accordance with the declared values of manufacturer and an official method based on spectrophotometric analysis. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The voltammetric determination of rutin in 0.04 mol l(-1) B-R buffer (pH 4.0) by square wave voltammograms (+0.41 V vs. Ag/AgCl(sat.)) at a poly glutamic acid modified glassy carbon electrode was found to be several orders of magnitude lower than that on a bare glassy carbon electrode. Rutin can be preconcentrated on the films of poly glutamic acid and presented linear relationship from concentration of 7 x 10(-7) to 1 x 10(-5) mol l(-1) in 0.04 mol l(-1) B-R buffer pH 4.0. The method was successfully applied to the determination of rutin in pharmaceutical formulation without any pretreatment.
Resumo:
The electrocatalysis of dopamine has been studied using a cobalt hexacyanoferrate film (CoHCFe)-modified glassy carbon electrode. Using a rotating disk CoHCFe-modified electrode, the reaction rate constant for dopamine was found to be 3.5 x 105 cm(3) mol(-1) s(-1) at a concentration of 5.0 x 10(-5) mol L-1. When a Nafion (R) film is applied to the CoHCFe-modified electrode surface a high selectivity for the determination of dopamine over ascorbic acid was obtained. The analytical curve for dopamine presented linear dependence over the concentration range from 1.2 x 10(-5) to 5.0 x 10(-4) mol L-1 with a slope of 23.5 mA mol(-1) L and a linear correlation coefficient of 0.999. The detection limit of this method was 8.9 x 10(-6) mol L-1 and the relative standard deviation for five measurements of 2.5 x 10(-4) mol L-1 dopamine was 0.58%.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present work reports the use of a screen-printed carbon electrode (SPCE) modified by poly-L-histidine film to determine chromium (VI). Stable films can be formed by direct addition of PH solution 1 % (w/v) on the electrode surface, followed by heating at 80°C during 5 min. Calibration curves can be constructed for Cr(VI) from 1.0 × 10-5 mol L-1 to 7.0 × 10-5 mol L-1 Cr (VI) in acetate buffer pH 4 using a preconcentration step of 60s at open circuit potential. A relative standard deviation of 3.2% was for five determination of 4.0 × 10 -5 mol L-1 Cr (VI). The method was successful applied to determination of Cr(VI) in wastewater samples from a leather dyeing industry. copyright The Electrochemical Society.