997 resultados para Geotechnical instrumentation
Resumo:
L’observation de l’exécution d’applications JavaScript est habituellement réalisée en instrumentant une machine virtuelle (MV) industrielle ou en effectuant une traduction source-à-source ad hoc et complexe. Ce mémoire présente une alternative basée sur la superposition de machines virtuelles. Notre approche consiste à faire une traduction source-à-source d’un programme pendant son exécution pour exposer ses opérations de bas niveau au travers d’un modèle objet flexible. Ces opérations de bas niveau peuvent ensuite être redéfinies pendant l’exécution pour pouvoir en faire l’observation. Pour limiter la pénalité en performance introduite, notre approche exploite les opérations rapides originales de la MV sous-jacente, lorsque cela est possible, et applique les techniques de compilation à-la-volée dans la MV superposée. Notre implémentation, Photon, est en moyenne 19% plus rapide qu’un interprète moderne, et entre 19× et 56× plus lente en moyenne que les compilateurs à-la-volée utilisés dans les navigateurs web populaires. Ce mémoire montre donc que la superposition de machines virtuelles est une technique alternative compétitive à la modification d’un interprète moderne pour JavaScript lorsqu’appliqué à l’observation à l’exécution des opérations sur les objets et des appels de fonction.
Resumo:
Hevea latex is a natural biological liquid of very complex composition .Besides rubber hydrocarbons,it contains many proteinous and resinous substances,carbohydrates,inorganic matter,water,and others.The Dry Rubber Content (DRC) of latex varies according to season, tapping system,weather,soil conditions ,clone,age of the tree etc. The true DRC of the latex must be determined to ensure fair prices for the latex during commercial exchange.The DRC of Hevea latex is a very familiar term to all in the rubber industry.It has been the basis for incentive payments to tappers who bring in more than the daily agreed poundage of latex.It is an important parameter for rubber and latex processing industries for automation and verious decesion making processes.This thesis embodies the efforts made by me to determine the DRC of rubber latex following different analytical tools such as MIR absorption,thermal analysis.dielectric spectroscopy and NIR reflectance.The rubber industry is still Looking for a compact instrument that is accurate economical,easy to use and environment friendly.I hope the results presented in this thesis will help to realise this goal in the near future.
Resumo:
Near-infrared spectroscopy can be a workhorse technique for materials analysis in industries such as agriculture, pharmaceuticals, chemicals and polymers. A near-infrared spectrum represents combination bands and overtone bands that are harmonics of absorption frequencies in the mid-infrared. Near-infrared absorption includes a combination-band region immediately adjacent to the mid-infrared and three overtone regions. All four near-infrared regions contain "echoes" of the fundamental mid-infrared absorptions. For example, vibrations in the mid-infrared due to the C-H stretches will produce four distinct bands in each of the overtone and combination regions. As the bands become more removed from the fundamental frequencies they become more widely separated from their neighbors, more broadened and are dramatically reduced in intensity. Because near-infrared bands are much less intense, more of the sample can be used to produce a spectra and with near-infrared, sample preparation activities are greatly reduced or eliminated so more of the sample can be utilized. In addition, long path lengths and the ability to sample through glass in the near-infrared allows samples to be measured in common media such as culture tubes, cuvettes and reaction bottles. This is unlike mid-infrared where very small amounts of a sample produce a strong spectrum; thus sample preparation techniques must be employed to limit the amount of the sample that interacts with the beam. In the present work we describe the successful the fabrication and calibration of a linear high resolution linear spectrometer using tunable diode laser and a 36 m path length cell and meuurement of a highly resolved structure of OH group in methanol in the transition region A v =3. We then analyse the NIR spectrum of certain aromatic molecules and study the substituent effects using local mode theory
Resumo:
All over the world, several Quaternary proxy data have been used to reconstruct past sea levels, mainly radiocarbon or OSL dating of exposures of marine facies or shore line indicators (e.g. Carr et al., 2010) as well as paleoenvironmental indicators in lagoon or estuary sediments (e.g. Baxter and Meadows, 1999). Estuaries and deltas develop at river mouths during transgressive and regressive phases, respectively (Boyd et al., 1992). In particular, the postglacial Holocene sea-level rise has contributed importantly to the estuary-to-delta transition (Hori et al. 2004). By analyzing radiocarbon ages of the basal or near-basal sediments of the world’s deltas, Stanley and Warne (1994) showed that delta initiation occurred on a worldwide scale after about 8500–6500 years BP and concluded that the initiation was controlled principally by the declining rate of the Holocene sea-level rise. Worldwide there were different regional sea-level changes since the last glacial maximum (LGM) (Irion et al., 2012). Along the northern Canadian coast, for example, sea level has been falling throughout the Holocene due to the glacial rebound of the crust after the last glaciation (Peltier, 1988). This is comparable to the development in Scandinavia (Steffen and Kaufmann, 2005) where sea level drops today. From about Virginia/USA to Mexico there is a constant sea-level rise similar to the Holocene sea-level development of the southern North Sea (e.g. Vink et al., 2007). From the border of Ceará/Rio Grande do Norte down to Patagonia, indicators of Holocene sea level point to a level that was up to 5 m higher than today's mean sea level (Angulo et al., 1999; Martin et al., 2003; Caldas et al., 2006a, b)
Resumo:
This paper describes an audio/visual project resulting in a public relations slide slow about Central Institute for the Deaf and its facilities and activities.
Resumo:
As improvements to the optical design of spectrometer and radiometer instruments evolve with advances in detector sensitivity, use of focal plane detector arrays and innovations in adaptive optics for large high altitude telescopes, interest in mid-infrared astronomy and remote sensing applications have been areas of progressive research in recent years. This research has promoted a number of developments in infrared coating performance, particularly by placing increased demands on the spectral imaging requirements of filters to precisely isolate radiation between discrete wavebands and improve photometric accuracy. The spectral design and construction of multilayer filters to accommodate these developments has subsequently been an area of challenging thin-film research, to achieve high spectral positioning accuracy, environmental durability and aging stability at cryogenic temperatures, whilst maximizing the far-infrared performance. In this paper we examine the design and fabrication of interference filters in instruments that utilize the mid-infrared N-band (6-15 µm) and Q-band (16-28 µm) atmospheric windows, together with a rationale for the selection of materials, deposition process, spectral measurements and assessment of environmental durability performance.
Resumo:
Cooled infrared filters have been used in pressure modulation and filter radiometry to measure the dynamics, temperature distribution and concentrations of atmospheric elements in various satellite radiometers. Invariably such instruments use precision infrared bandpass filters and coatings for spectral selction, often operating at cryogenic temperatures. More recent developments in the use of spectrally-selective cooled detectors in focal plane arrays have simplified the optical layout and reduced the component count of radiometers but have placed additional demands on both the spectral and physical performance requirements of the filters. This paper describes and contrasts the more traditional radiometers using discrete detectors with those which use focal plane detector array technology, with particular emphasis on the function of the filters and coatings in the two cases. Additionally we discuss the spectral techniques and materials used to fabricate infrared coatings and filters for use in space optics, and give examples of their application in the fabrication of some demanding long wavelength dichroics and filters. We also discuss the effects of the space environment on the stability and durability of high performance infrared filters and materials exposed to low Earth orbit for 69 months on the NASA Long Duration Exposure Facility (LDEF).
Resumo:
Aims: Quinolone antibiotics are the agents of choice for treating systemic Salmonella infections. Resistance to quinolones is usually mediated by mutations in the DNA gyrase gene gyrA. Here we report the evaluation of standard HPLC equipment for the detection of mutations (single nucleotide polymorphisms; SNPs) in gyrA, gyrB, parC and parE by denaturing high performance liquid chromatography (DHPLC). Methods: A panel of Salmonella strains was assembled which comprised those with known different mutations in gyrA (n = 8) and fluoroquinolone-susceptible and -resistant strains (n = 50) that had not been tested for mutations in gyrA. Additionally, antibiotic-susceptible strains of serotypes other than Salmonella enterica serovar Typhimurium strains were examined for serotype-specific mutations in gyrB (n = 4), parC (n = 6) and parE (n = 1). Wild-type (WT) control DNA was prepared from Salmonella Typhimurium NCTC 74. The DNA of respective strains was amplified by PCR using Optimase (R) proofreading DNA polymerase. Duplex DNA samples were analysed using an Agilent A1100 HPLC system with a Varian Helix (TM) DNA column. Sequencing was used to validate mutations detected by DHPLC in the strains with unknown mutations. Results: Using this HPLC system, mutations in gyrA, gyrB, parC and parE were readily detected by comparison with control chromatograms. Sequencing confirmed the gyrA predicted mutations as detected by DHPLC in the unknown strains and also confirmed serotype-associated sequence changes in non-Typhimurium serotypes. Conclusions: The results demonstrated that a non-specialist standard HPLC machine fitted with a generally available column can be used to detect SNPs in gyrA, gyrB, parC and parE genes by DHPLC. Wider applications should be possible.
Resumo:
During the interval between 8:00-9:30 on 14 January 2001, the four Cluster spacecraft were moving from the central magnetospheric lobe, through the dusk sector mantle, on their way towards intersecting the magnetopause near 15:00 MLT and 15:00 UT. Throughout this interval, the EIS-CAT Svalbard Radar (ESR) at Longyearbyen observed a series of poleward-moving transient events of enhanced F-region plasma concentration ("polar cap patches"), with a repetition period of the order of 10 min. Allowing for the estimated solar wind propagation delay of 75 ( 5) min, the interplanetary magnetic field (IMF) had a southward component during most of the interval. The magnetic footprint of the Cluster spacecraft, mapped to the ionosphere using the Tsyganenko T96 model (with input conditions prevailing during this event), was to the east of the ESR beams. Around 09:05 UT, the DMSP-F12 satellite flew over the ESR and showed a sawtooth cusp ion dispersion signature that also extended into the electrons on the equatorward edge of the cusp, revealing a pulsed magnetopause reconnection. The consequent enhanced ionospheric flow events were imaged by the SuperDARN HF backscatter radars. The average convection patterns (derived using the AMIE technique on data from the magnetometers, the EISCAT and SuperDARN radars, and the DMSP satellites) show that the associated poleward-moving events also convected over the predicted footprint of the Cluster spacecraft. Cluster observed enhancements in the fluxes of both electrons and ions. These events were found to be essentially identical at all four spacecraft, indicating that they had a much larger spatial scale than the satellite separation of the order of 600 km. Some of the events show a correspondence between the lowest energy magnetosheath electrons detected by the PEACE instrument on Cluster (10-20 eV) and the topside ionospheric enhancements seen by the ESR (at 400-700 km). We suggest that a potential barrier at the magnetopause, which prevents the lowest energy electrons from entering the magnetosphere, is reduced when and where the boundary-normal magnetic field is enhanced and that the observed polar cap patches are produced by the consequent enhanced precipitation of the lowest energy electrons, making them and the low energy electron precipitation fossil remnants of the magnetopause reconnection rate pulses.
Resumo:
Geotechnical systems, such as landfills, mine tailings storage facilities (TSFs), slopes, and levees, are required to perform safely throughout their service life, which can span from decades for levees to “in perpetuity” for TSFs. The conventional design practice by geotechnical engineers for these systems utilizes the as-built material properties to predict its performance throughout the required service life. The implicit assumption in this design methodology is that the soil properties are stable through time. This is counter to long-term field observations of these systems, particularly where ecological processes such as plant, animal, biological, and geochemical activity are present. Plant roots can densify soil and/or increase hydraulic conductivity, burrowing animals can increase seepage, biological activity can strengthen soil, geochemical processes can increase stiffness, etc. The engineering soil properties naturally change as a stable ecological system is gradually established following initial construction, and these changes alter system performance. This paper presents an integrated perspective and new approach to this issue, considering ecological, geotechnical, and mining demands and constraints. A series of data sets and case histories are utilized to examine these issues and to propose a more integrated design approach, and consideration is given to future opportunities to manage engineered landscapes as ecological systems. We conclude that soil scientists and restoration ecologists must be engaged in initial project design and geotechnical engineers must be active in long-term management during the facility’s service life. For near-surface geotechnical structures in particular, this requires an interdisciplinary perspective and the embracing of soil as a living ecological system rather than an inert construction material.