378 resultados para Geostatistics
Resumo:
A compreensão das interacções entre os oceanos, a linha de costa, a qualidade do ar e as florestas só será possível através do registo e análise de informação geo-temporalmente referenciada. Mas a monitorização de grandes áreas apresenta o problema da cobertura espacial e temporal, e os custos nela envolvidos pela impossibilidade de disseminar a quantidade de estações de monitorização necessários à compreensão do fenómeno. É necessário então definir metodologias de colocação de sensores e recolha de informação de forma robusta, económica e temporalmente útil. Nesta dissertação apresentamos uma estratégia de monitorização ambiental, para meios hídricos, (ou de grande dimensão) que baseada em sistemas móveis e alguns princípios da geoestatística, fornece uma ferramenta de monitorização mais económica, sem prejuízo da qualidade de informação. Os modelos usados na geoestatística assentam na ideia de que medidas mais próximas tendem a serem mais parecidas do que valores observados em locais distantes e fornece métodos para quantificar esta correlação espacial e incorporá-la na estimação. Os resultados obtidos sustentam a convicção do uso de veículos móveis em redes de sensores e que contribuímos para responder à seguinte questão “Qual a técnica que nos permite com poucos sensores monitorizar grandes áreas?”. A solução passará por modelos de estimação de grandezas utilizados na geoestatística associados a sistemas móveis.
Resumo:
OBJECTIVE: To identify clusters of the major occurrences of leprosy and their associated socioeconomic and demographic factors. METHODS: Cases of leprosy that occurred between 1998 and 2007 in São José do Rio Preto (southeastern Brazil) were geocodified and the incidence rates were calculated by census tract. A socioeconomic classification score was obtained using principal component analysis of socioeconomic variables. Thematic maps to visualize the spatial distribution of the incidence of leprosy with respect to socioeconomic levels and demographic density were constructed using geostatistics. RESULTS: While the incidence rate for the entire city was 10.4 cases per 100,000 inhabitants annually between 1998 and 2007, the incidence rates of individual census tracts were heterogeneous, with values that ranged from 0 to 26.9 cases per 100,000 inhabitants per year. Areas with a high leprosy incidence were associated with lower socioeconomic levels. There were identified clusters of leprosy cases, however there was no association between disease incidence and demographic density. There was a disparity between the places where the majority of ill people lived and the location of healthcare services. CONCLUSIONS: The spatial analysis techniques utilized identified the poorer neighborhoods of the city as the areas with the highest risk for the disease. These data show that health departments must prioritize politico-administrative policies to minimize the effects of social inequality and improve the standards of living, hygiene, and education of the population in order to reduce the incidence of leprosy.
Resumo:
Geostatistics has been successfully used to analyze and characterize the spatial variability of environmental properties. Besides giving estimated values at unsampled locations, it provides a measure of the accuracy of the estimate, which is a significant advantage over traditional methods used to assess pollution. In this work universal block kriging is novelty used to model and map the spatial distribution of salinity measurements gathered by an Autonomous Underwater Vehicle in a sea outfall monitoring campaign, with the aim of distinguishing the effluent plume from the receiving waters, characterizing its spatial variability in the vicinity of the discharge and estimating dilution. The results demonstrate that geostatistical methodology can provide good estimates of the dispersion of effluents that are very valuable in assessing the environmental impact and managing sea outfalls. Moreover, since accurate measurements of the plume’s dilution are rare, these studies might be very helpful in the future to validate dispersion models.
Resumo:
Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies
Resumo:
Dissertação apresentada como requisito parcial para a obtenção do grau de Mestre em Estatística e Gestão de Informação
Resumo:
A thesis submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Information Systems
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Ciência e Sistemas de Informação Geográfica
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Geológica (Georrecursos)
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
As florestas são uma fonte importante de recursos naturais, desempenhando um papel fulcral na sustentabilidade ambiental. A sua gestão quer territorial quer económica, conduz a uma maximização da produção, sem alteração da qualidade da matéria-prima. Portugal apresenta mais de um terço do seu território coberto por floresta, apresentando uma possibilidade de aplicação de sistemas de gestão, territorial e económica que maximizem a sua produção. Os Sistemas de Informação Geográfica (SIG) são modelos da realidade em que é possível integrar toda a informação disponível sobre um assunto tendo por base um campo comum a todos as variáveis, a localização geográfica. Os SIG podem contribuir de diversas formas para um maior desenvolvimento das rotinas e ferramentas de planeamento e gestão florestal. A sua integração com modelos quantitativos para planeamento e gestão de florestas é uma mais-valia nesta área. Nesta dissertação apresentam-se modelos geoestatísticos, com recurso a Sistemas de Informação Geográfica, de apoio e suporte à produção de pinha em Pinheiro-manso (Pinus pinea L.). Procurando estimar as áreas com melhor propensão à produção, a partir de dados amostrais. Estes foram previamente estudados tendo sido selecionadas quatro variáveis: largura da copa, área basal, altura da árvore e produção de pinha. A geoestatística aplicada, inclui modelos de correlação espacial: kriging, onde são atribuídos pesos às amostras a partir de uma análise espacial baseada no variograma experimental. Foi utilizada a extensão Geostatistical Analyst do ArcGis da ESRI, para realizar 96 krigings para as quatro variáveis em estudo, com diferentes parametrizações, destes foram selecionados 8 krigings. Com base nos critérios de adequação dos modelos e da análise de resultados da predição dos erros - cross validation. O resultado deste estudo é apresentado através de mapas de previsão para a produção de pinha em Pinheiro manso, em que foram analisadas áreas com maior e menor probabilidade de produção tendo-se realizado análises de comparação de variáveis. Através da interseção de todas as variáveis com a produção, podemos concluir que os concelhos com maiores áreas de probabilidade de produção de pinha em Pinheiro manso, da área de estudo, são Alcácer do Sal, Montemor-o-Novo, Vendas Novas, Coruche e Chamusca. Com a realização de um cruzamento de dados entre os resultados obtidos dos krigings, e a Carta de Uso e Ocupação do Solo de Portugal Continental para 2007 (COS2007), realizaram-se mapas de previsão para a expansão do Pinheiro manso. Nas áreas de expansão conseguimos atingir aumentos mínimos na ordem dos 11% e máximo na ordem dos 61%. No total consegue-se atingir aproximadamente 128 mil ha para área de expansão do Pinheiro manso. Superando, os valores esperados pelos Planos Regionais de Ordenamento Florestal, abrangidos pela área da amostra em estudo, em que é esperado um incremento de cerca de 130 mil hectares de área de Pinheiro manso para 2030.
Resumo:
Programa Doutoral em Matemática e Aplicações.
Resumo:
The nitrogen dioxide is a primary pollutant, regarded for the estimation of the air quality index, whose excessive presence may cause significant environmental and health problems. In the current work, we suggest characterizing the evolution of NO2 levels, by using geostatisti- cal approaches that deal with both the space and time coordinates. To develop our proposal, a first exploratory analysis was carried out on daily values of the target variable, daily measured in Portugal from 2004 to 2012, which led to identify three influential covariates (type of site, environment and month of measurement). In a second step, appropriate geostatistical tools were applied to model the trend and the space-time variability, thus enabling us to use the kriging techniques for prediction, without requiring data from a dense monitoring network. This method- ology has valuable applications, as it can provide accurate assessment of the nitrogen dioxide concentrations at sites where either data have been lost or there is no monitoring station nearby.
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
A partir de las últimas décadas se ha impulsado el desarrollo y la utilización de los Sistemas de Información Geográficos (SIG) y los Sistemas de Posicionamiento Satelital (GPS) orientados a mejorar la eficiencia productiva de distintos sistemas de cultivos extensivos en términos agronómicos, económicos y ambientales. Estas nuevas tecnologías permiten medir variabilidad espacial de propiedades del sitio como conductividad eléctrica aparente y otros atributos del terreno así como el efecto de las mismas sobre la distribución espacial de los rendimientos. Luego, es posible aplicar el manejo sitio-específico en los lotes para mejorar la eficiencia en el uso de los insumos agroquímicos, la protección del medio ambiente y la sustentabilidad de la vida rural. En la actualidad, existe una oferta amplia de recursos tecnológicos propios de la agricultura de precisión para capturar variación espacial a través de los sitios dentro del terreno. El óptimo uso del gran volumen de datos derivado de maquinarias de agricultura de precisión depende fuertemente de las capacidades para explorar la información relativa a las complejas interacciones que subyacen los resultados productivos. La covariación espacial de las propiedades del sitio y el rendimiento de los cultivos ha sido estudiada a través de modelos geoestadísticos clásicos que se basan en la teoría de variables regionalizadas. Nuevos desarrollos de modelos estadísticos contemporáneos, entre los que se destacan los modelos lineales mixtos, constituyen herramientas prometedoras para el tratamiento de datos correlacionados espacialmente. Más aún, debido a la naturaleza multivariada de las múltiples variables registradas en cada sitio, las técnicas de análisis multivariado podrían aportar valiosa información para la visualización y explotación de datos georreferenciados. La comprensión de las bases agronómicas de las complejas interacciones que se producen a la escala de lotes en producción, es hoy posible con el uso de éstas nuevas tecnologías. Los objetivos del presente proyecto son: (l) desarrollar estrategias metodológicas basadas en la complementación de técnicas de análisis multivariados y geoestadísticas, para la clasificación de sitios intralotes y el estudio de interdependencias entre variables de sitio y rendimiento; (ll) proponer modelos mixtos alternativos, basados en funciones de correlación espacial de los términos de error que permitan explorar patrones de correlación espacial de los rendimientos intralotes y las propiedades del suelo en los sitios delimitados. From the last decades the use and development of Geographical Information Systems (GIS) and Satellite Positioning Systems (GPS) is highly promoted in cropping systems. Such technologies allow measuring spatial variability of site properties including electrical conductivity and others soil features as well as their impact on the spatial variability of yields. Therefore, site-specific management could be applied to improve the efficiency in the use of agrochemicals, the environmental protection, and the sustainability of the rural life. Currently, there is a wide offer of technological resources to capture spatial variation across sites within field. However, the optimum use of data coming from the precision agriculture machineries strongly depends on the capabilities to explore the information about the complex interactions underlying the productive outputs. The covariation between spatial soil properties and yields from georeferenced data has been treated in a graphical manner or with standard geostatistical approaches. New statistical modeling capabilities from the Mixed Linear Model framework are promising to deal with correlated data such those produced by the precision agriculture. Moreover, rescuing the multivariate nature of the multiple data collected at each site, several multivariate statistical approaches could be crucial tools for data analysis with georeferenced data. Understanding the basis of complex interactions at the scale of production field is now within reach the use of these new techniques. Our main objectives are: (1) to develop new statistical strategies, based on the complementarities of geostatistics and multivariate methods, useful to classify sites within field grown with grain crops and analyze the interrelationships of several soil and yield variables, (2) to propose mixed linear models to predict yield according spatial soil variability and to build contour maps to promote a more sustainable agriculture.
Resumo:
Locating new wind farms is of crucial importance for energy policies of the next decade. To select the new location, an accurate picture of the wind fields is necessary. However, characterizing wind fields is a difficult task, since the phenomenon is highly nonlinear and related to complex topographical features. In this paper, we propose both a nonparametric model to estimate wind speed at different time instants and a procedure to discover underrepresented topographic conditions, where new measuring stations could be added. Compared to space filling techniques, this last approach privileges optimization of the output space, thus locating new potential measuring sites through the uncertainty of the model itself.