877 resultados para Geometry texture
Resumo:
Spontaneous facial expressions differ from posed ones in appearance, timing and accompanying head movements. Still images cannot provide timing or head movement information directly. However, indirectly the distances between key points on a face extracted from a still image using active shape models can capture some movement and pose changes. This information is superposed on information about non-rigid facial movement that is also part of the expression. Does geometric information improve the discrimination between spontaneous and posed facial expressions arising from discrete emotions? We investigate the performance of a machine vision system for discrimination between posed and spontaneous versions of six basic emotions that uses SIFT appearance based features and FAP geometric features. Experimental results on the NVIE database demonstrate that fusion of geometric information leads only to marginal improvement over appearance features. Using fusion features, surprise is the easiest emotion (83.4% accuracy) to be distinguished, while disgust is the most difficult (76.1%). Our results find different important facial regions between discriminating posed versus spontaneous version of one emotion and classifying the same emotion versus other emotions. The distribution of the selected SIFT features shows that mouth is more important for sadness, while nose is more important for surprise, however, both the nose and mouth are important for disgust, fear, and happiness. Eyebrows, eyes, nose and mouth are important for anger.
Resumo:
Texture analysis and textural cues have been applied for image classification, segmentation and pattern recognition. Dominant texture descriptors include directionality, coarseness, line-likeness etc. In this dissertation a class of textures known as particulate textures are defined, which are predominantly coarse or blob-like. The set of features that characterise particulate textures are different from those that characterise classical textures. These features are micro-texture, macro-texture, size, shape and compaction. Classical texture analysis techniques do not adequately capture particulate texture features. This gap is identified and new methods for analysing particulate textures are proposed. The levels of complexity in particulate textures are also presented ranging from the simplest images where blob-like particles are easily isolated from their back- ground to the more complex images where the particles and the background are not easily separable or the particles are occluded. Simple particulate images can be analysed for particle shapes and sizes. Complex particulate texture images, on the other hand, often permit only the estimation of particle dimensions. Real life applications of particulate textures are reviewed, including applications to sedimentology, granulometry and road surface texture analysis. A new framework for computation of particulate shape is proposed. A granulometric approach for particle size estimation based on edge detection is developed which can be adapted to the gray level of the images by varying its parameters. This study binds visual texture analysis and road surface macrotexture in a theoretical framework, thus making it possible to apply monocular imaging techniques to road surface texture analysis. Results from the application of the developed algorithm to road surface macro-texture, are compared with results based on Fourier spectra, the auto- correlation function and wavelet decomposition, indicating the superior performance of the proposed technique. The influence of image acquisition conditions such as illumination and camera angle on the results was systematically analysed. Experimental data was collected from over 5km of road in Brisbane and the estimated coarseness along the road was compared with laser profilometer measurements. Coefficient of determination R2 exceeding 0.9 was obtained when correlating the proposed imaging technique with the state of the art Sensor Measured Texture Depth (SMTD) obtained using laser profilometers.
Resumo:
Unusual event detection in crowded scenes remains challenging because of the diversity of events and noise. In this paper, we present a novel approach for unusual event detection via sparse reconstruction of dynamic textures over an overcomplete basis set, with the dynamic texture described by local binary patterns from three orthogonal planes (LBPTOP). The overcomplete basis set is learnt from the training data where only the normal items observed. In the detection process, given a new observation, we compute the sparse coefficients using the Dantzig Selector algorithm which was proposed in the literature of compressed sensing. Then the reconstruction errors are computed, based on which we detect the abnormal items. Our application can be used to detect both local and global abnormal events. We evaluate our algorithm on UCSD Abnormality Datasets for local anomaly detection, which is shown to outperform current state-of-the-art approaches, and we also get promising results for rapid escape detection using the PETS2009 dataset.
Resumo:
With the advent of live cell imaging microscopy, new types of mathematical analyses and measurements are possible. Many of the real-time movies of cellular processes are visually very compelling, but elementary analysis of changes over time of quantities such as surface area and volume often show that there is more to the data than meets the eye. This unit outlines a geometric modeling methodology and applies it to tubulation of vesicles during endocytosis. Using these principles, it has been possible to build better qualitative and quantitative understandings of the systems observed, as well as to make predictions about quantities such as ligand or solute concentration, vesicle pH, and membrane trafficked. The purpose is to outline a methodology for analyzing real-time movies that has led to a greater appreciation of the changes that are occurring during the time frame of the real-time video microscopy and how additional quantitative measurements allow for further hypotheses to be generated and tested.
Practical improvements to simultaneous computation of multi-view geometry and radial lens distortion
Resumo:
This paper discusses practical issues related to the use of the division model for lens distortion in multi-view geometry computation. A data normalisation strategy is presented, which has been absent from previous discussions on the topic. The convergence properties of the Rectangular Quadric Eigenvalue Problem solution for computing division model distortion are examined. It is shown that the existing method can require more than 1000 iterations when dealing with severe distortion. A method is presented for accelerating convergence to less than 10 iterations for any amount of distortion. The new method is shown to produce equivalent or better results than the existing method with up to two orders of magnitude reduction in iterations. Through detailed simulation it is found that the number of data points used to compute geometry and lens distortion has a strong influence on convergence speed and solution accuracy. It is recommended that more than the minimal number of data points be used when computing geometry using a robust estimator such as RANSAC. Adding two to four extra samples improves the convergence rate and accuracy sufficiently to compensate for the increased number of samples required by the RANSAC process.
Resumo:
The effect of sample geometry on the melting rates of burning iron rods was assessed. Promoted-ignition tests were conducted with rods having cylindrical, rectangular, and triangular cross-sectional shapes over a range of cross-sectional areas. The regression rate of the melting interface (RRMI) was assessed using a statistical approach which enabled the quantification of confidence levels for the observed differences in RRMI. Statistically significant differences in RRMI were observed for rods with the same cross-sectional area but different cross-sectional shape. The magnitude of the proportional difference in RRMI increased with the cross-sectional area. Triangular rods had the highest RRMI, followed by rectangular rods, and then cylindrical rods. The dependence of RRMI on rod shape is shown to relate to the action of molten metal at corners. The corners of the rectangular and triangular rods melted faster than the faces due to their locally higher surface area to volume ratios. This phenomenon altered the attachment geometry between liquid and solid phases, increasing the surface area available for heat transfer, causing faster melting. Findings relating to the application of standard flammability test results in industrial situations are also presented.
Resumo:
This paper reports on a study that focused on growth of understanding about teaching geometry by a group of prospective teachers engaged in lesson plan study within a computer-supported collaborative learning (CSCL) environment. Participation in the activity was found to facilitate considerable growth in the participants’ pedagogical-content knowledge (PCK). Factors that influenced growth in PCK included the nature of the lesson planning task, the cognitive scaffolds inserted into the CSCL virtual space, the meta-language scaffolds provided to the participants, and the provision of both private and public discourse spaces. The paper concludes with recommendations for enhancing effective knowledge-building discourse about mathematics PCK within prospective teacher education CSCL environments.
Resumo:
Feature extraction and selection are critical processes in developing facial expression recognition (FER) systems. While many algorithms have been proposed for these processes, direct comparison between texture, geometry and their fusion, as well as between multiple selection algorithms has not been found for spontaneous FER. This paper addresses this issue by proposing a unified framework for a comparative study on the widely used texture (LBP, Gabor and SIFT) and geometric (FAP) features, using Adaboost, mRMR and SVM feature selection algorithms. Our experiments on the Feedtum and NVIE databases demonstrate the benefits of fusing geometric and texture features, where SIFT+FAP shows the best performance, while mRMR outperforms Adaboost and SVM. In terms of computational time, LBP and Gabor perform better than SIFT. The optimal combination of SIFT+FAP+mRMR also exhibits a state-of-the-art performance.
Resumo:
During the late 20th century it was proposed that a design aesthetic reflecting current ecological concerns was required within the overall domain of the built environment and specifically within landscape design. To address this, some authors suggested various theoretical frameworks upon which such an aesthetic could be based. Within these frameworks there was an underlying theme that the patterns and processes of Nature may have the potential to form this aesthetic — an aesthetic based on fractal rather than Euclidean geometry. In order to understand how fractal geometry, described as the geometry of Nature, could become the referent for a design aesthetic, this research examines the mathematical concepts of fractal Geometry, and the underlying philosophical concepts behind the terms ‘Nature’ and ‘aesthetics’. The findings of this initial research meant that a new definition of Nature was required in order to overcome the barrier presented by the western philosophical Nature¯culture duality. This new definition of Nature is based on the type and use of energy. Similarly, it became clear that current usage of the term aesthetics has more in common with the term ‘style’ than with its correct philosophical meaning. The aesthetic philosophy of both art and the environment recognises different aesthetic criteria related to either the subject or the object, such as: aesthetic experience; aesthetic attitude; aesthetic value; aesthetic object; and aesthetic properties. Given these criteria, and the fact that the concept of aesthetics is still an active and ongoing philosophical discussion, this work focuses on the criteria of aesthetic properties and the aesthetic experience or response they engender. The examination of fractal geometry revealed that it is a geometry based on scale rather than on the location of a point within a three-dimensional space. This enables fractal geometry to describe the complex forms and patterns created through the processes of Wild Nature. Although fractal geometry has been used to analyse the patterns of built environments from a plan perspective, it became clear from the initial review of the literature that there was a total knowledge vacuum about the fractal properties of environments experienced every day by people as they move through them. To overcome this, 21 different landscapes that ranged from highly developed city centres to relatively untouched landscapes of Wild Nature have been analysed. Although this work shows that the fractal dimension can be used to differentiate between overall landscape forms, it also shows that by itself it cannot differentiate between all images analysed. To overcome this two further parameters based on the underlying structural geometry embedded within the landscape are discussed. These parameters are the Power Spectrum Median Amplitude and the Level of Isotropy within the Fourier Power Spectrum. Based on the detailed analysis of these parameters a greater understanding of the structural properties of landscapes has been gained. With this understanding, this research has moved the field of landscape design a step close to being able to articulate a new aesthetic for ecological design.
Resumo:
Lower energy and protein intakes are well documented in patients on texture modified diets. In acute hospital settings, the provision of appropriate texture modified foods to meet industry standards is essential for patient safety and nutrition outcomes. The texture modified menu at an acute private hospital was evaluated in accordance with their own nutritional standards (NS) and Australian National Standards (Dietitians Association of Australia and Speech Pathology Australia, 2007). The NS documents portion sizes and nutritional requirements for each menu. Texture B and C menus were analysed qualitatively and quantitatively over 9 days of a 6 day cyclic menu for breakfast (n=4), lunch (n=34) and dinner (n=34). Results indicated a lack of portion control, as specified by the NS, across all meals including breakfast (65–140%), soup (55–115%), meat (45–165%), vegetables (55–185%) and desserts (30–300%). Dilution factors and portion sizes influenced the protein and energy availability of Texture B & C menus. While the Texture B menu provided more energy, neither menu met the NS. Limited dessert options on the Texture C menu restricted the ability of this menu to meet protein NS. A lack of portion control and menu items incorrectly modified can compromise protein and energy intakes. Strategies to correct serving sizes and provision of alternate protein sources were recommended. Suggestions included cost-effectively increasing the variety of foods to assist protein and energy intake and the procurement of standardised equipment and visual aids to assist food preparation and presentation in accordance with texture modified guidelines and the NS.
Resumo:
Abstract: The radical pair that results from photolysis of adenosylcob(II1)alamin (AdoCbl"') undergoes primary geminate recombination with a first-order rate constant of 1 x lo9 s-l. In contrast, methylcob(II1)alamin (CH3Cbl"') and aristeromicylcob(II1)alamin (AriCblII', the carbocyclic analogue of AdoCbl"' in which the ribofuranose ring oxygen has been replaced with a methylene group) does not undergo primary geminate recombination. The ribofwanose group enables a high rate of geminate recombination in the [Ado' Cbl"'] radical pair. This may be due to a stereoelectronic (p-anomeric) effect that maintains a pyramidal geometry at the 5'-carbon of the 5'-deoxyadenosyl radical, or it may be due to hindered rotation about the C4t-C5, bond such that /?-elimination to the olefin is prevented. Recombination in the geminate singlet radical pair is in competition with diffusive escape to form a solvent-separated radical pair. Hyperfine coupling from Co" promotes intersystem crossing to the triplet radical pair (Chagovetz, A. M.; Grissom, C. B. J. Am. Chem. SOC. 1993, 115, 12152). Recombination of the [CH3' Cbl"] radical pair is not prevented by a lack of intersystem crossing, as neither unlabeled or I3C-labeled CH3Cbl"' undergoes geminate recombination. There is only a small difference in the rate of diffusive recombination in the solvent cage for AdoCbl"', AriCbl"', and CH3Cbl"' following photolysis: 2.01 x 10" s-l, 2.20 x lo4 s-l, and 1.16 x lo4 s-l. The rate of diffusive recombination is limited by productive collisions and not by radical geometry or intersystem crossing. The CF3' radical that results from photolysis of (trifluoromethyl)cob(III)alamin (CF3Cbl"') maintains its pyramidal geometry and undergoes faster diffusive recombination in the solvent cage at 51 x lo4 s-l. The C-Co bond dissociation enthalpy in AriCbl"' is 37 f 1.4 kcaymol. The profound difference in geminate recombination rates for AdoCbl"' and CH3Cbl"' is consistent with their different biological roles as enzymatic cofactors: AdoCbl"' is an initiator of radical chain chemistry in the active site, whereas CH3Cbl"' is a methyl group donor in an S~2-type process.
Resumo:
Facial expression is an important channel of human social communication. Facial expression recognition (FER) aims to perceive and understand emotional states of humans based on information in the face. Building robust and high performance FER systems that can work in real-world video is still a challenging task, due to the various unpredictable facial variations and complicated exterior environmental conditions, as well as the difficulty of choosing a suitable type of feature descriptor for extracting discriminative facial information. Facial variations caused by factors such as pose, age, gender, race and occlusion, can exert profound influence on the robustness, while a suitable feature descriptor largely determines the performance. Most present attention on FER has been paid to addressing variations in pose and illumination. No approach has been reported on handling face localization errors and relatively few on overcoming facial occlusions, although the significant impact of these two variations on the performance has been proved and highlighted in many previous studies. Many texture and geometric features have been previously proposed for FER. However, few comparison studies have been conducted to explore the performance differences between different features and examine the performance improvement arisen from fusion of texture and geometry, especially on data with spontaneous emotions. The majority of existing approaches are evaluated on databases with posed or induced facial expressions collected in laboratory environments, whereas little attention has been paid on recognizing naturalistic facial expressions on real-world data. This thesis investigates techniques for building robust and high performance FER systems based on a number of established feature sets. It comprises of contributions towards three main objectives: (1) Robustness to face localization errors and facial occlusions. An approach is proposed to handle face localization errors and facial occlusions using Gabor based templates. Template extraction algorithms are designed to collect a pool of local template features and template matching is then performed to covert these templates into distances, which are robust to localization errors and occlusions. (2) Improvement of performance through feature comparison, selection and fusion. A comparative framework is presented to compare the performance between different features and different feature selection algorithms, and examine the performance improvement arising from fusion of texture and geometry. The framework is evaluated for both discrete and dimensional expression recognition on spontaneous data. (3) Evaluation of performance in the context of real-world applications. A system is selected and applied into discriminating posed versus spontaneous expressions and recognizing naturalistic facial expressions. A database is collected from real-world recordings and is used to explore feature differences between standard database images and real-world images, as well as between real-world images and real-world video frames. The performance evaluations are based on the JAFFE, CK, Feedtum, NVIE, Semaine and self-collected QUT databases. The results demonstrate high robustness of the proposed approach to the simulated localization errors and occlusions. Texture and geometry have different contributions to the performance of discrete and dimensional expression recognition, as well as posed versus spontaneous emotion discrimination. These investigations provide useful insights into enhancing robustness and achieving high performance of FER systems, and putting them into real-world applications.
Resumo:
Complex flow datasets are often difficult to represent in detail using traditional vector visualisation techniques such as arrow plots and streamlines. This is particularly true when the flow regime changes in time. Texture-based techniques, which are based on the advection of dense textures, are novel techniques for visualising such flows (i.e., complex dynamics and time-dependent). In this paper, we review two popular texture-based techniques and their application to flow datasets sourced from real research projects. The texture-based techniques investigated were Line Integral Convolution (LIC), and Image-Based Flow Visualisation (IBFV). We evaluated these techniques and in this paper report on their visualisation effectiveness (when compared with traditional techniques), their ease of implementation, and their computational overhead.
Resumo:
Detailed representations of complex flow datasets are often difficult to generate using traditional vector visualisation techniques such as arrow plots and streamlines. This is particularly true when the flow regime changes in time. Texture-based techniques, which are based on the advection of dense textures, are novel techniques for visualising such flows. We review two popular texture based techniques and their application to flow datasets sourced from active research projects. The techniques investigated were Line integral convolution (LIC) [1], and Image based flow visualisation (IBFV) [18]. We evaluated these and report on their effectiveness from a visualisation perspective. We also report on their ease of implementation and computational overheads.
Resumo:
The geometry of ductile strain localization phenomena is related to the rheology of the deformed rocks. Both qualitative and quantitative rheological properties of natural rocks have been estimated from finite field structures such as folds and shear zones. We apply physical modelling to investigate the relationship between rheology and the temporal evolution of the width and transversal strain distribution in shear zones, both of which have been used previously as rheological proxies. Geologically relevant materials with well-characterized rheological properties (Newtonian, strain hardening, strain softening, Mohr-Coulomb) are deformed in a shear box and observed with Particle Imaging Velocimetry (PIV). It is shown that the width and strain distribution histories in model shear zones display characteristic finite responses related to material properties as predicted by previous studies. Application of the results to natural shear zones in the field is discussed. An investigation of the impact of 3D boundary conditions in the experiments demonstrates that quantitative methods for estimating rheology from finite natural structures must take these into account carefully.