993 resultados para Geometry, Non-euclidean
Resumo:
In this thesis we explore the combinatorial properties of several polynomials arising in matroid theory. Our main motivation comes from the problem of computing them in an efficient way and from a collection of conjectures, mainly the real-rootedness and the monotonicity of their coefficients with respect to weak maps. Most of these polynomials can be interpreted as Hilbert--Poincaré series of graded vector spaces associated to a matroid and thus some combinatorial properties can be inferred via combinatorial algebraic geometry (non-negativity, palindromicity, unimodality); one of our goals is also to provide purely combinatorial interpretations of these properties, for example by redefining these polynomials as poset invariants (via the incidence algebra of the lattice of flats); moreover, by exploiting the bases polytopes and the valuativity of these invariants with respect to matroid decompositions, we are able to produce efficient closed formulas for every paving matroid, a class that is conjectured to be predominant among all matroids. One last goal is to extend part of our results to a higher categorical level, by proving analogous results on the original graded vector spaces via abelian categorification or on equivariant versions of these polynomials.
Resumo:
We study of noncompact Euclidean cone manifolds with cone angles less than c&2π and singular locus a submanifold. More precisely, we describe its structure outside a compact set. As a corol lary we classify those with cone angles & 2π/3 and those with cone angles = 2π/3.
Resumo:
In this paper we relate the numerical invariants attached to a projective curve, called the order sequence of the curve, to the geometry of the varieties of tangent linear spaces to the curve and to the Gauss maps of the curve. © 1992 Sociedade Brasileira de Matemática.
Resumo:
The design of a lateral line for drip irrigation requires accurate evaluation of head losses in not only the pipe but in the emitters as well. A procedure was developed to determine localized head losses within the emitters by the formulation of a mathematical model that accounts for the obstruction caused by the insertion point. These localized losses can be significant when compared with tire total head losses within the system due to the large number of emitters typically installed along the lateral line. Air experiment was carried out by altering flow characteristics to create Reynolds numbers (R) from 7,480 to 32,597 to provide turbulent flow and a maximum velocity of 2.0 m s(-1). The geometry of the emitter was determined by an optical projector and sensor An equation was formulated to facilitate the localized head loss calculation using the geometric characteristics of the emitter (emitter length, obstruction ratio, and contraction coefficient). The mathematical model was tested using laboratory measurements on four emitters. The local head loss was accurately estimated for the Uniram (difference of +13.6%) and Drip Net (difference of +7.7%) emitters, while appreciable deviations were found for the Twin Plus (-21.8%) and Tiran (+50%) emitters. The head loss estimated by the model was sensitive to the variations in the obstruction area of the emitter However, the variations in the local head loss did not result in significant variations in the maximum length of the lateral lines. In general, for all the analyzed emitters, a 50% increase in the local head loss for the emitters resulted in less than an 8% reduction in the maximum lateral length.
Resumo:
We derive analytical solutions for the three-dimensional time-dependent buckling of a non-Newtonian viscous plate in a less viscous medium. For the plate we assume a power-law rheology. The principal, axes of the stretching D-ij in the homogeneously deformed ground state are parallel and orthogonal to the bounding surfaces of the plate in the flat state. In the model formulation the action of the less viscous medium is replaced by equivalent reaction forces. The reaction forces are assumed to be parallel to the normal vector of the deformed plate surfaces. As a consequence, the buckling process is driven by the differences between the in-plane stresses and out of plane stress, and not by the in-plane stresses alone as assumed in previous models. The governing differential equation is essentially an orthotropic plate equation for rate dependent material, under biaxial pre-stress, supported by a viscous medium. The differential problem is solved by means of Fourier transformation and largest growth coefficients and corresponding wavenumbers are evaluated. We discuss in detail fold evolutions for isotropic in-plane stretching (D-11 = D-22), uniaxial plane straining (D-22 = 0) and in-plane flattening (D-11 = -2D(22)). Three-dimensional plots illustrate the stages of fold evolution for random initial perturbations or initial embryonic folds with axes non-parallel to the maximum compression axis. For all situations, one dominant set of folds develops normal to D-11, although the dominant wavelength differs from the Biot dominant wavelength except when the plate has a purely Newtonian viscosity. However, in the direction parallel to D-22, there exist infinitely many modes in the vicinity of the dominant wavelength which grow only marginally slower than the one corresponding to the dominant wavelength. This means that, except for very special initial conditions, the appearance of a three-dimensional fold will always be governed by at least two wavelengths. The wavelength in the direction parallel to D-11 is the dominant wavelength, and the wavelength(s) in the direction parallel to D-22 is determined essentially by the statistics of the initial state. A comparable sensitivity to the initial geometry does not exist in the classic two-dimensional folding models. In conformity with tradition we have applied Kirchhoff's hypothesis to constrain the cross-sectional rotations of the plate. We investigate the validity of this hypothesis within the framework of Reissner's plate theory. We also include a discussion of the effects of adding elasticity into the constitutive relations and show that there exist critical ratios of the relaxation times of the plate and the embedding medium for which two dominant wavelengths develop, one at ca. 2.5 of the classical Biot dominant wavelength and the other at ca. 0.45 of this wavelength. We propose that herein lies the origin of parasitic folds well known in natural examples.
Resumo:
Background and Aim: It is unclear to what extent diabetes modulates the ageing-related adaptations of cardiac geometry and function. Methods and Results: We examined 1005 adults, aged 25-74 years, from a population-based survey at baseline in 1994/5 and at follow-up in 2004/5. We compared persistently non-diabetic individuals (ND; no diabetes at baseline and at follow-up, n = 833) with incident (ID; non-diabetic at baseline and diabetic at follow-up, n = 36) and with prevalent diabetics (PD; diabetes at baseline and follow-up examination, n = 21). Left ventricular (LV) geometry and function were evaluated by echocardiography. Statistical analyses were performed with multivariate linear regression models. Over ten years the PD group displayed a significantly stronger relative increase of LV mass (+9.34% vs. +23.7%) that was mediated by a more pronounced increase of LV end-diastolic diameter (+0% vs. +6.95%) compared to the ND group. In parallel, LA diameter increased (+4.50% vs. +12.7%), whereas ejection fraction decreased (+3.02% vs. -4.92%) more significantly in the PD group. Moreover, at the follow-up examination the PD and ID groups showed a significantly worse diastolic function, indicated by a higher E/EM ratio compared with the ND group (11.6 and 11.8 vs. 9.79, respectively). Conclusions: Long-standing diabetes was associated with an acceleration of age-related changes of left ventricular geometry accumulating in an eccentric remodelling of the left ventricle. Likewise, echocardiographic measures of systolic and diastolic ventricular function deteriorated more rapidly in individuals with diabetes. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Num universo despovoado de formas geométricas perfeitas, onde proliferam superfícies irregulares, difíceis de representar e de medir, a geometria fractal revelou-se um instrumento poderoso no tratamento de fenómenos naturais, até agora considerados erráticos, imprevisíveis e aleatórios. Contudo, nem tudo na natureza é fractal, o que significa que a geometria euclidiana continua a ser útil e necessária, o que torna estas geometrias complementares. Este trabalho centra-se no estudo da geometria fractal e na sua aplicação a diversas áreas científicas, nomeadamente, à engenharia. São abordadas noções de auto-similaridade (exata, aproximada), formas, dimensão, área, perímetro, volume, números complexos, semelhança de figuras, sucessão e iterações relacionadas com as figuras fractais. Apresentam-se exemplos de aplicação da geometria fractal em diversas áreas do saber, tais como física, biologia, geologia, medicina, arquitetura, pintura, engenharia eletrotécnica, mercados financeiros, entre outras. Conclui-se que os fractais são uma ferramenta importante para a compreensão de fenómenos nas mais diversas áreas da ciência. A importância do estudo desta nova geometria, é avassaladora graças à sua profunda relação com a natureza e ao avançado desenvolvimento tecnológico dos computadores.
Resumo:
This work presents an improved model to solve the non-emergency patients transport (NEPT) service issues given the new rules recently established in Portugal. The model follows the same principle of the Team Orienteering Problem by selecting the patients to be included in the routes attending the maximum reduction in costs when compared with individual transportation. This model establishes the best sets of patients to be transported together. The model was implemented in AMPL and a compact formulation was solved using NEOS Server. A heuristic procedure based on iteratively solving Orienteering Problems is presented, and this heuristic provides good results in terms of accuracy and computation time. Euclidean instances as well as asymmetric real data gathered from Google maps were used, and the model has a promising performance mainly with asymmetric cost matrices.
Resumo:
The first main result of the paper is a criterion for a partially commutative group G to be a domain. It allows us to reduce the study of algebraic sets over G to the study of irreducible algebraic sets, and reduce the elementary theory of G (of a coordinate group over G) to the elementary theories of the direct factors of G (to the elementary theory of coordinate groups of irreducible algebraic sets). Then we establish normal forms for quantifier-free formulas over a non-abelian directly indecomposable partially commutative group H. Analogously to the case of free groups, we introduce the notion of a generalised equation and prove that the positive theory of H has quantifier elimination and that arbitrary first-order formulas lift from H to H * F, where F is a free group of finite rank. As a consequence, the positive theory of an arbitrary partially commutative group is decidable.
Resumo:
Theory of compositional data analysis is often focused on the composition only. However in practical applications we often treat a composition together with covariableswith some other scale. This contribution systematically gathers and develop statistical tools for this situation. For instance, for the graphical display of the dependenceof a composition with a categorical variable, a colored set of ternary diagrams mightbe a good idea for a first look at the data, but it will fast hide important aspects ifthe composition has many parts, or it takes extreme values. On the other hand colored scatterplots of ilr components could not be very instructive for the analyst, if theconventional, black-box ilr is used.Thinking on terms of the Euclidean structure of the simplex, we suggest to set upappropriate projections, which on one side show the compositional geometry and on theother side are still comprehensible by a non-expert analyst, readable for all locations andscales of the data. This is e.g. done by defining special balance displays with carefully-selected axes. Following this idea, we need to systematically ask how to display, explore,describe, and test the relation to complementary or explanatory data of categorical, real,ratio or again compositional scales.This contribution shows that it is sufficient to use some basic concepts and very fewadvanced tools from multivariate statistics (principal covariances, multivariate linearmodels, trellis or parallel plots, etc.) to build appropriate procedures for all these combinations of scales. This has some fundamental implications in their software implementation, and how might they be taught to analysts not already experts in multivariateanalysis
Resumo:
Compositional data analysis motivated the introduction of a complete Euclidean structure in the simplex of D parts. This was based on the early work of J. Aitchison (1986) and completed recently when Aitchinson distance in the simplex was associated with an inner product and orthonormal bases were identified (Aitchison and others, 2002; Egozcue and others, 2003). A partition of the support of a random variable generates a composition by assigning the probability of each interval to a part of the composition. One can imagine that the partition can be refined and the probability density would represent a kind of continuous composition of probabilities in a simplex of infinitely many parts. This intuitive idea would lead to a Hilbert-space of probability densitiesby generalizing the Aitchison geometry for compositions in the simplex into the set probability densities