931 resultados para Geographic information science|Information science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

"April 1987"--cover.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"January 1989"--Cover.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"October 1983"--P. [1]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research investigates the contribution that Geographic Information Systems (GIS) can make to the land suitability process used to determine the effects of a climate change scenario. The research is intended to redress the severe under representation of Developing countries within the literature examining the impacts of climatic change upon crop productivity. The methodology adopts some of the Intergovernmental Panel on Climate Change (IPCC) estimates for regional climate variations, based upon General Circulation Model predictions (GCMs) and applies them to a baseline climate for Bangladesh. Utilising the United Nations Food & Agricultural Organisation's Agro-ecological Zones land suitability methodology and crop yield model, the effects of the scenario upon agricultural productivity on 14 crops are determined. A Geographic Information System (IDRISI) is adopted in order to facilitate the methodology, in conjunction with a specially designed spreadsheet, used to determine the yield and suitability rating for each crop. A simple optimisation routine using the GIS is incorporated to provide an indication of the 'maximum theoretical' yield available to the country, should the most calorifically significant crops be cultivated on each land unit both before and after the climate change scenario. This routine will provide an estimate of the theoretical population supporting capacity of the country, both now and in the future, to assist with planning strategies and research. The research evaluates the utility of this alternative GIS based methodology for the land evaluation process and determines the relative changes in crop yields that may result from changes in temperature, photosynthesis and flooding hazard frequency. In summary, the combination of a GIS and a spreadsheet was successful, the yield prediction model indicates that the application of the climate change scenario will have a deleterious effect upon the yields of the study crops. Any yield reductions will have severe implications for agricultural practices. The optimisation routine suggests that the 'theoretical maximum' population supporting capacity is well in excess of current and future population figures. If this agricultural potential could be realised however, it may provide some amelioration from the effects of climate change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geographic Information Systems (GIS) is an emerging information technology (IT) which promises to have large scale influences in how spatially distributed resources are managed. It has had applications in the management of issues as diverse as recovering from the disaster of Hurricane Andrew to aiding military operations in Desert Storm. Implementation of GIS systems is an important issue because there are high cost and time involvement in setting them up. An important component of the implementation problem is the "meaning" different groups of people who are influencing the implementation give to the technology. The research was based on the theory of (theoretical stance to the problem was based on the) "Social Construction of Knowledge" systems which assumes knowledge systems are subject to sociological analysis both in usage and in content. An interpretive research approach was adopted to inductively derive a model which explains how the "meanings" of a GIS are socially constructed. The research design entailed a comparative case analysis over two county sites which were using the same GIS for a variety of purposes. A total of 75 in-depth interviews were conducted to elicit interpretations of GIS. Results indicate that differences in how geographers and data-processors view the technology lead to different implementation patterns in the two sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Land use and transportation interaction has been a research topic for several decades. There have been efforts to identify impacts of transportation on land use from several different perspectives. One focus has been the role of transportation improvements in encouraging new land developments or relocation of activities due to improved accessibility. The impacts studied have included property values and increased development. Another focus has been on the changes in travel behavior due to better mobility and accessibility. Most studies to date have been conducted in metropolitan level, thus unable to account for interactions spatially and temporally at smaller geographic scales. ^ In this study, a framework for studying the temporal interactions between transportation and land use was proposed and applied to three selected corridor areas in Miami-Dade County, Florida. The framework consists of two parts: one is developing of temporal data and the other is applying time series analysis to this temporal data to identify their dynamic interactions. Temporal GIS databases were constructed and used to compile building permit data and transportation improvement projects. Two types of time series analysis approaches were utilized: univariate models and multivariate models. Time series analysis is designed to describe the dynamic consequences of time series by developing models and forecasting the future of the system based on historical trends. Model estimation results from the selected corridors were then compared. ^ It was found that the time series models predicted residential development better than commercial development. It was also found that results from three study corridors varied in terms of the magnitude of impacts, length of lags, significance of the variables, and the model structure. Long-run effect or cumulated impact of transportation improvement on land developments was also measured with time series techniques. The study offered evidence that congestion negatively impacted development and transportation investments encouraged land development. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Annual average daily traffic (AADT) is important information for many transportation planning, design, operation, and maintenance activities, as well as for the allocation of highway funds. Many studies have attempted AADT estimation using factor approach, regression analysis, time series, and artificial neural networks. However, these methods are unable to account for spatially variable influence of independent variables on the dependent variable even though it is well known that to many transportation problems, including AADT estimation, spatial context is important. ^ In this study, applications of geographically weighted regression (GWR) methods to estimating AADT were investigated. The GWR based methods considered the influence of correlations among the variables over space and the spatially non-stationarity of the variables. A GWR model allows different relationships between the dependent and independent variables to exist at different points in space. In other words, model parameters vary from location to location and the locally linear regression parameters at a point are affected more by observations near that point than observations further away. ^ The study area was Broward County, Florida. Broward County lies on the Atlantic coast between Palm Beach and Miami-Dade counties. In this study, a total of 67 variables were considered as potential AADT predictors, and six variables (lanes, speed, regional accessibility, direct access, density of roadway length, and density of seasonal household) were selected to develop the models. ^ To investigate the predictive powers of various AADT predictors over the space, the statistics including local r-square, local parameter estimates, and local errors were examined and mapped. The local variations in relationships among parameters were investigated, measured, and mapped to assess the usefulness of GWR methods. ^ The results indicated that the GWR models were able to better explain the variation in the data and to predict AADT with smaller errors than the ordinary linear regression models for the same dataset. Additionally, GWR was able to model the spatial non-stationarity in the data, i.e., the spatially varying relationship between AADT and predictors, which cannot be modeled in ordinary linear regression. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research analyzed the spatial relationship between a mega-scale fracture network and the occurrence of vegetation in an arid region. High-resolution aerial photographs of Arches National Park, Utah were used for digital image processing. Four sets of large-scale joints were digitized from the rectified color photograph in order to characterize the geospatial properties of the fracture network with the aid of a Geographic Information System. An unsupervised landcover classification was carried out to identify the spatial distribution of vegetation on the fractured outcrop. Results of this study confirm that the WNW-ESE alignment of vegetation is dominantly controlled by the spatial distribution of the systematic joint set, which in turn parallels the regional fold axis. This research provides insight into the spatial heterogeneity inherent to fracture networks, as well as the effects of jointing on the distribution of surface vegetation in desert environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis research describes the design and implementation of a Semantic Geographic Information System (GIS) and the creation of its spatial database. The database schema is designed and created, and all textual and spatial data are loaded into the database with the help of the Semantic DBMS's Binary Database Interface currently being developed at the FIU's High Performance Database Research Center (HPDRC). A friendly graphical user interface is created together with the other main system's areas: displaying process, data animation, and data retrieval. All these components are tightly integrated to form a novel and practical semantic GIS that has facilitated the interpretation, manipulation, analysis, and display of spatial data like: Ocean Temperature, Ozone(TOMS), and simulated SeaWiFS data. At the same time, this system has played a major role in the testing process of the HPDRC's high performance and efficient parallel Semantic DBMS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to develop a GIS-based multi-class index overlay model to determine areas susceptible to inland flooding during extreme precipitation events in Broward County, Florida. Data layers used in the method include Airborne Laser Terrain Mapper (ALTM) elevation data, excess precipitation depth determined through performing a Soil Conservation Service (SCS) Curve Number (CN) analysis, and the slope of the terrain. The method includes a calibration procedure that uses "weights and scores" criteria obtained from Hurricane Irene (1999) records, a reported 100-year precipitation event, Doppler radar data and documented flooding locations. Results are displayed in maps of Eastern Broward County depicting types of flooding scenarios for a 100-year, 24-hour storm based on the soil saturation conditions. As expected the results of the multi-class index overlay analysis showed that an increase for the potential of inland flooding could be expected when a higher antecedent moisture condition is experienced. The proposed method proves to have some potential as a predictive tool for flooding susceptibility based on a relatively simple approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the prevalence of smartphones, new ways of engaging citizens and stakeholders in urban planning and govern-ance are emerging. The technologies in smartphones allow citizens to act as sensors of their environment, producing and sharing rich spatial data useful for new types of collaborative governance set-ups. Data derived from Volunteered Geographic Information (VGI) can support accessible, transparent, democratic, inclusive, and locally-based governance situations of interest to planners, citizens, politicians, and scientists. However, there are still uncertainties about how to actually conduct this in practice. This study explores how social media VGI can be used to document spatial tendencies regarding citizens’ uses and perceptions of urban nature with relevance for urban green space governance. Via the hashtag #sharingcph, created by the City of Copenhagen in 2014, VGI data consisting of geo-referenced images were collected from Instagram, categorised according to their content and analysed according to their spatial distribution patterns. The results show specific spatial distributions of the images and main hotspots. Many possibilities and much potential of using VGI for generating, sharing, visualising and communicating knowledge about citizens’ spatial uses and preferences exist, but as a tool to support scientific and democratic interaction, VGI data is challenged by practical, technical and ethical concerns. More research is needed in order to better understand the usefulness and application of this rich data source to governance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.