964 resultados para Generation expansion planning
Resumo:
This paper presents a methodology to solve the transmission network expansion planning problem (TNEP) considering reliability and uncertainty in the demand. The proposed methodology provides an optimal expansion plan that allows the power system to operate adequately with an acceptable level of reliability and in an enviroment with uncertainness. The reliability criterion limits the expected value of the reliability index (LOLE - Loss Of Load Expectation) of the expanded system. The reliability is evaluated for the transmission system using an analytical technique based in enumeration. The mathematical model is solved, in a efficient way, using a specialized genetic algorithm of Chu-Beasley modified. Detailed results from an illustrative example are presented and discussed. © 2009 IEEE.
Resumo:
This paper presents the application of a new metaheuristic algorithm to solve the transmission expansion planning problem. A simple heuristic, using a relaxed network model associated with cost perturbation, is applied to generate a set of high quality initial solutions with different topologies. The population is evolved using a multi-move path-relinking with the objective of finding minimum investment cost for the transmission expansion planning problem employing the DC representation. The algorithm is tested on the southern Brazilian system, obtaining the optimal solution for the system with better performance than similar metaheuristics algorithms applied to the same problem. ©2010 IEEE.
Resumo:
This paper presents a Bi-level Programming (BP) approach to solve the Transmission Network Expansion Planning (TNEP) problem. The proposed model is envisaged under a market environment and considers security constraints. The upper-level of the BP problem corresponds to the transmission planner which procures the minimization of the total investment and load shedding cost. This upper-level problem is constrained by a single lower-level optimization problem which models a market clearing mechanism that includes security constraints. Results on the Garver's 6-bus and IEEE 24-bus RTS test systems are presented and discussed. Finally, some conclusions are drawn. © 2011 IEEE.
Resumo:
Transmission expansion planning (TEP) is a non-convex optimization problem that can be solved via different heuristic algorithms. A variety of classical as well as heuristic algorithms in literature are addressed to solve TEP problem. In this paper a modified constructive heuristic algorithm (CHA) is proposed for solving such a crucial problem. Most of research papers handle TEP problem by linearization of the non-linear mathematical model while in this research TEP problem is solved via CHA using non-linear model. The proposed methodology is based upon Garver's algorithm capable of applying to a DC model. Simulation studies and tests results on the well known transmission network such as: Garver and IEEE 24-bus systems are carried out to show the significant performance as well as the effectiveness of the proposed algorithm. © 2011 IEEE.
Resumo:
This paper proposes a new strategy to reduce the combinatorial search space of a mixed integer linear programming (MILP) problem. The construction phase of greedy randomized adaptive search procedure (GRASP-CP) is employed to reduce the domain of the integer variables of the transportation model of the transmission expansion planning (TM-TEP) problem. This problem is a MILP and very difficult to solve specially for large scale systems. The branch and bound (BB) algorithm is used to solve the problem in both full and the reduced search space. The proposed method might be useful to reduce the search space of those kinds of MILP problems that a fast heuristic algorithm is available for finding local optimal solutions. The obtained results using some real test systems show the efficiency of the proposed method. © 2012 Springer-Verlag.
Resumo:
This paper presents a novel mathematical model for the transmission network expansion planning problem. Main idea is to consider phase-shifter (PS) transformers as a new element of the transmission system expansion together with other traditional components such as transmission lines and conventional transformers. In this way, PS are added in order to redistribute active power flows in the system and, consequently, to diminish the total investment costs due to new transmission lines. Proposed mathematical model presents the structure of a mixed-integer nonlinear programming (MINLP) problem and is based on the standard DC model. In this paper, there is also applied a specialized genetic algorithm aimed at optimizing the allocation of candidate components in the network. Results obtained from computational simulations carried out with IEEE-24 bus system show an outstanding performance of the proposed methodology and model, indicating the technical viability of using these nonconventional devices during the planning process. Copyright © 2012 Celso T. Miasaki et al.
Resumo:
This paper proposes strategies to reduce the number of variables and the combinatorial search space of the multistage transmission expansion planning problem (TEP). The concept of the binary numeral system (BNS) is used to reduce the number of binary and continuous variables related to the candidate transmission lines and network constraints that are connected with them. The construction phase of greedy randomized adaptive search procedure (GRASP-CP) and additional constraints, obtained from power flow equilibrium in an electric power system are employed for more reduction in search space. The multistage TEP problem is modeled like a mixed binary linear programming problem and solved using a commercial solver with a low computational time. The results of one test system and two real systems are presented in order to show the efficiency of the proposed solution technique. © 1969-2012 IEEE.
Resumo:
In this paper, a hybrid heuristic methodology that employs fuzzy logic for solving the AC transmission network expansion planning (AC-TEP) problem is presented. An enhanced constructive heuristic algorithm aimed at obtaining a significant quality solution for such complicated problems considering contingency is proposed. In order to indicate the severity of the contingency, 2 performance indices, namely the line flow performance index and voltage performance index, are calculated. An interior point method is applied as a nonlinear programming solver to handle such nonconvex optimization problems, while the objective function includes the costs of the new transmission lines as well as the real power losses. The performance of the proposed method is examined by applying it to the well-known Garver system for different cases. The simulation studies and result analysis demonstrate that the proposed method provides a promising way to find an optimal plan. Obtaining the best quality solution shows the capability and the viability of the proposed algorithm in AC-TEP. © Tübi̇tak..
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents a mixed-integer quadratically-constrained programming (MIQCP) model to solve the distribution system expansion planning (DSEP) problem. The DSEP model considers the construction/reinforcement of substations, the construction/reconductoring of circuits, the allocation of fixed capacitors banks and the radial topology modification. As the DSEP problem is a very complex mixed-integer non-linear programming problem, it is convenient to reformulate it like a MIQCP problem; it is demonstrated that the proposed formulation represents the steady-state operation of a radial distribution system. The proposed MIQCP model is a convex formulation, which allows to find the optimal solution using optimization solvers. Test systems of 23 and 54 nodes and one real distribution system of 136 nodes were used to show the efficiency of the proposed model in comparison with other DSEP models available in the specialized literature. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
In this paper a novel Branch and Bound (B&B) algorithm to solve the transmission expansion planning which is a non-convex mixed integer nonlinear programming problem (MINLP) is presented. Based on defining the options of the separating variables and makes a search in breadth, we call this algorithm a B&BML algorithm. The proposed algorithm is implemented in AMPL and an open source Ipopt solver is used to solve the nonlinear programming (NLP) problems of all candidates in the B&B tree. Strategies have been developed to address the problem of non-linearity and non-convexity of the search region. The proposed algorithm is applied to the problem of long-term transmission expansion planning modeled as an MINLP problem. The proposed algorithm has carried out on five commonly used test systems such as Garver 6-Bus, IEEE 24-Bus, 46-Bus South Brazilian test systems, Bolivian 57-Bus, and Colombian 93-Bus. Results show that the proposed methodology not only can find the best known solution but it also yields a large reduction between 24% to 77.6% in the number of NLP problems regarding to the size of the systems.
Resumo:
Transmission expansion planning (TEP) is a classic problem in electric power systems. In current optimization models used to approach the TEP problem, new transmission lines and two-winding transformers are commonly used as the only candidate solutions. However, in practice, planners have resorted to non-conventional solutions such as network reconfiguration and/or repowering of existing network assets (lines or transformers). These types of non-conventional solutions are currently not included in the classic mathematical models of the TEP problem. This paper presents the modeling of necessary equations, using linear expressions, in order to include non-conventional candidate solutions in the disjunctive linear model of the TEP problem. The resulting model is a mixed integer linear programming problem, which guarantees convergence to the optimal solution by means of available classical optimization tools. The proposed model is implemented in the AMPL modeling language and is solved using CPLEX optimizer. The Garver test system, IEEE 24-busbar system, and a Colombian system are used to demonstrate that the utilization of non-conventional candidate solutions can reduce investment costs of the TEP problem. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a mixed-integer convex-optimization-based approach for optimum investment reactive power sources in transmission systems. Unlike some convex-optimization techniques for the reactive power planning solution, in the proposed approach the taps settings of under-load tap-changing of transformers are modeled as a mixed-integer linear set equations. Are also considered the continuous and discrete variables for the existing and new capacitive and reactive power sources. The problem is solved for three significant demand scenarios (low demand, average demand and peak demand). Numerical results are presented for the CIGRE-32 electric power system.
Resumo:
Electric vehicles (EV) do not emit tailpipe exhaust fumes in the same manner as internal combustion engine vehicles. Optimal benefits can only be achieved, if EVS are deployed effectively, so that the tailpipe emissions are not substituted by additional emissions in the electricity sector. This paper examines the potential contributions that Plug in Hybrid Electric Vehicles can make in reducing carbon dioxide. The paper presents the results of the generation expansion model for Northern Ireland and the Republic of Ireland built using the dynamic programming based long term generation expansion planning tool called the Wien Automatic System Planning IV tool. The model optimizes power dispatch using hourly electricity demand curves for each year up to 2020, while incorporating generator characteristics and certain operational requirements such as energy not served and loss of load probability while satisfying constraints on environmental emissions, fuel availability and generator operational and maintenance costs. In order to simulate the effect of PHEV, two distinct charging scenarios are applied based on a peak tariff and an off peak tariff. The importance and influence of the charging regime on the amount of energy used and gaseous emissions displaced is determined and discussed.