945 resultados para General Electric Research Laboratories
Resumo:
"This research was supported by the Advanced Research Projects Agency, Department of defense, and was monitored by the U.S. Army Missile Command, Redstone Arsenal, Alabama."
Resumo:
Subtitle varies slightly.
Resumo:
"Materials Central, Contract no. 33(616)-5995. Project no. 7351.
Resumo:
At head of title: Public and Employee Relations Research Service.
Resumo:
"August 1988."
Resumo:
University libraries worldwide are reconceptualising the ways in which they support the research agenda in their respective institutions. This paper is based on a survey completed by member libraries of the Queensland University Libraries Office of Cooperation (QUL OC), the findings of which may be informative for other university libraries. After briefly examining major emerging trends in research support, the paper discusses the results of the survey specifically focussing on support for researchers and the research agenda in their institutions. All responding libraries offer a high level of research support, however, eResearch support, in general, and research data management support, in particular, have the highest variance among the libraries, and signal possible areas for growth. Areas for follow-up, benchmarking and development are suggested.
Resumo:
Policy makers increasingly recognise that an educated workforce with a high proportion of Science, Technology, Engineering and Mathematics (STEM) graduates is a pre-requisite to a knowledge-based, innovative economy. Over the past ten years, the proportion of first university degrees awarded in Australia in STEM fields is below the global average and continues to decrease from 22.2% in 2002 to 18.8% in 2010 [1]. These trends are mirrored by declines between 20% and 30% in the proportions of high school students enrolled in science or maths. These trends are not unique to Australia but their impact is of concern throughout the policy-making community. To redress these demographic trends, QUT embarked upon a long-term investment strategy to integrate education and research into the physical and virtual infrastructure of the campus, recognising that expectations of students change as rapidly as technology and learning practices change. To implement this strategy, physical infrastructure refurbishment/re-building is accompanied by upgraded technologies not only for learning but also for research. QUT’s vision for its city-based campuses is to create vibrant and attractive places to learn and research and to link strongly to the wider surrounding community. Over a five year period, physical infrastructure at the Gardens Point campus was substantially reconfigured in two key stages: (a) a >$50m refurbishment of heritage-listed buildings to encompass public, retail and social spaces, learning and teaching “test beds” and research laboratories and (b) destruction of five buildings to be replaced by a $230m, >40,000m2 Science and Engineering Centre designed to accommodate retail, recreation, services, education and research in an integrated, coordinated precinct. This landmark project is characterised by (i) self-evident, collaborative spaces for learning, research and social engagement, (ii) sustainable building practices and sustainable ongoing operation and; (iii) dynamic and mobile re-configuration of spaces or staffing to meet demand. Innovative spaces allow for transformative, cohort-driven learning and the collaborative use of space to prosecute joint class projects. Research laboratories are aggregated, centralised and “on display” to the public, students and staff. A major visualisation space – the largest multi-touch, multi-user facility constructed to date – is a centrepiece feature that focuses on demonstrating scientific and engineering principles or science oriented scenes at large scale (e.g. the Great Barrier Reef). Content on this visualisation facility is integrated with the regional school curricula and supports an in-house schools program for student and teacher engagement. Researchers are accommodated in a combined open-plan and office floor-space (80% open plan) to encourage interdisciplinary engagement and cross-fertilisation of skills, ideas and projects. This combination of spaces re-invigorates the on-campus experience, extends educational engagement across all ages and rapidly enhances research collaboration.
Resumo:
In 1963, the National Institutes of Health (NIH) first issued guidelines for animal housing and husbandry. The most recent 2010 revision emphasizes animal care “in ways judged to be scientifically, technically, and humanely appropriate” (National Institutes of Health, 2010, p. XIII). The goal of these guidelines is to ensure humanitarian treatment of animals and to optimize the quality of research. Although these animal care guidelines cover a substantial amount of information regarding animal housing and husbandry, researchers generally do not report all these variables (see Table Table1).1). The importance of housing and husbandry conditions with respect to standardization across different research laboratories has been debated previously (Crabbe et al., 1999; Van Der Staay and Steckler, 2002; Wahlsten et al., 2003; Wolfer et al., 2004; Van Der Staay, 2006; Richter et al., 2010, 2011). This paper focuses on several animal husbandry and housing issues that are particularly relevant to stress responses in rats, including transportation, handling, cage changing, housing conditions, light levels and the light–dark cycle. We argue that these key animal housing and husbandry variables should be reported in greater detail in an effort to raise awareness about extraneous experimental variables, especially those that have the potential to interact with the stress response.
Resumo:
Physical activity (PA) parenting research has proliferated over the past decade, with findings verifying the influential role that parents play in children's emerging PA behaviors. This knowledge, however, has not translated into effective family-based PA interventions. During a preconference workshop to the 2012 International Society for Behavioral Nutrition and Physical Activity annual meeting, a PA parenting workgroup met to: (1) Discuss challenges in PA parenting research that may limit its translation, (2) identify explanations or reasons for such challenges, and; (3) recommend strategies for future research. Challenges discussed by the workgroup included a proliferation of disconnected and inconsistently measured constructs, a limited understanding of the dimensions of PA parenting, and a narrow conceptualization of hypothesized moderators of the relationship between PA parenting and child PA. Potential reasons for such challenges emphasized by the group included a disinclination to employ theory when developing measures and examining predictors and outcomes of PA parenting as well as a lack of agreed-upon measurement standards. Suggested solutions focused on the need to link PA parenting research with general parenting research, define and adopt rigorous standards of measurement, and identify new methods to assess PA parenting. As an initial step toward implementing these recommendations, the workgroup developed a conceptual model that: (1) Integrates parenting dimensions from the general parenting literature into the conceptualization of PA parenting, (2) draws on behavioral and developmental theory, and; (3) emphasizes areas which have been neglected to date including precursors to PA parenting and effect modifiers.
Resumo:
BACKGROUND OR CONTEXT Laboratories provide the physical spaces for engineering students to connect with theory and have a personal hands-on learning experience. Learning space design and development is well established in many universities however laboratories are often not part of that movement. While active, collaborative and group learning pedagogies are all key words in relation to these new spaces the concepts have always been central to laboratory based learning. The opportunity to build on and strengthen good practice in laboratories is immense. In the 2001 review “Universities in Crisis” many references are made to the decline of laboratories. One such comment in the review was made by Professor Ian Chubb (AVCC), who in 2013, as Chief Scientist for Australia, identifies the national concern about STEM education and presents a strategic plan to address the challenges ahead. What has been achieved and changed in engineering teaching and research laboratories in this time? PURPOSE OR GOAL A large number of universities in Australia and New Zealand own laboratory and other infrastructure designed well for the era they were built but now showing signs of their age, unable to meet the needs of today’s students, limiting the effectiveness of learning outcomes and presenting very low utilisation rates. This paper will present a model for new learning space design that improves student experience and engagement, supporting academic aims and significantly raising the space utilisation rate. APPROACH A new approach in laboratory teaching and research including new management has been adopted by the engineering disciplines at QUT. Flexibility is an underpinning principle along with the modularisation of fixed teaching and learning equipment, high utilisation of spaces and dynamic pedagogical approaches. The revitalised laboratories and workshop facilities are used primarily for the engineering disciplines and increasingly for integrated use across many disciplines in the STEM context. The new approach was built upon a base of an integrated faculty structure from 2005 and realised in 2010 as an associated development with the new Science and Engineering Centre (SEC). Evaluation through student feedback surveys for practical activities, utilisation rate statistics and uptake by academic and technical staff indicate a very positive outcome. DISCUSSION Resulting from this implementation has been increased satisfaction by students, creation of social learning and connecting space and an environment that meets the needs and challenges of active, collaborative and group learning pedagogies. Academic staff are supported, technical operations are efficient and laboratories are effectively utilised. RECOMMENDATIONS/IMPLICATIONS/CONCLUSION Future opportunities for continuous improvement are evident in using the student feedback to rectify faults and improve equipment, environment and process. The model is easily articulated and visible to other interested parties to contribute to sector wide development of learning spaces.
Resumo:
Diseases caused by the Lancefield group A streptococcus, Streptococcus pyogenes, are amongst the most challenging to clinicians and public health specialists alike. Although severe infections caused by S. pyogenes are relatively uncommon, affecting around 3 per 100,000 of the population per annum in developed countries, the case fatality is high relative to many other infections. Despite a long scientific tradition of studying their occurrence and characteristics, many aspects of their epidemiology remain poorly understood, and potential control measures undefined. Epidemiological studies can play an important role in identifying host, pathogen and environmental factors associated with risk of disease, manifestation of particular syndromes or poor survival. This can be of value in targeting prevention activities, as well directing further basic research, potentially paving the way for the identification of novel therapeutic targets. The formation of a European network, Strep-EURO, provided an opportunity to explore epidemiological patterns across Europe. Funded by the Fifth Framework Programme of the European Commission s Directorate-General for Research (QLK2.CT.2002.01398), the Strep-EURO network was launched in September 2002. Twelve participants across eleven countries took part, led by the University of Lund in Sweden. Cases were defined as patients with S. pyogenes isolated from a normally sterile site, or non-sterile site in combination with clinical signs of streptococcal toxic shock syndrome (STSS). All participating countries undertook prospective enhanced surveillance between 1st January 2003 and 31st December 2004 to identify cases diagnosed during this period. A standardised surveillance dataset was defined, comprising demographic, clinical and risk factor information collected through a questionnaire. Isolates were collected by the national reference laboratories and characterised according to their M protein using conventional serological and emm gene typing. Descriptive statistics and multivariable analyses were undertaken to compare characteristics of cases between countries and identify factors associated with increased risk of death or development of STSS. Crude and age-adjusted rates of infection were calculated for each country where a catchment population could be defined. The project succeeded in establishing the first European surveillance network for severe S. pyogenes infections, with 5522 cases identified over the two years. Analysis of data gathered in the eleven countries yielded important new information on the epidemiology of severe S. pyogenes infections in Europe during the 2000s. Comprehensive epidemiological data on these infections were obtained for the first time from France, Greece and Romania. Incidence estimates identified a general north-south gradient, from high to low. Remarkably similar age-standardised rates were observed among the three Nordic participants, between 2.2 and 2.3 per 100,000 population. Rates in the UK were higher still, 2.9/100,000, elevated by an upsurge in drug injectors. Rates from these northern countries were reasonably close to those observed in the USA and Australia during this period. In contrast, rates of reports in the more central and southern countries (Czech Republic, Romania, Cyprus and Italy) were substantially lower, 0.3 to 1.5 per 100,000 population, a likely reflection of poorer uptake of microbiological diagnostic methods within these countries. Analysis of project data brought some new insights into risk factors for severe S. pyogenes infection, especially the importance of injecting drug users in the UK, with infections in this group fundamentally reshaping the epidemiology of these infections during this period. Several novel findings arose through this work, including the high degree of congruence in seasonal patterns between countries and the seasonal changes in case fatality rates. Elderly patients, those with compromised immune systems, those who developed STSS and those infected with an emm/M78, emm/M5, emm/M3 or emm/M1 were found to be most likely to die as a result of their infection, whereas those diagnosed with cellulitis, septic arthritis, puerperal sepsis or with non-focal infection were associated with low risk of death, as were infections occurring during October. Analysis of augmented data from the UK found use of NSAIDs to be significantly associated with development of STSS, adding further fuel to the debate surrounding the role of NSAIDs in the development of severe disease. As a largely community-acquired infection, occurring sporadically and diffusely throughout the population, opportunities for control of severe infections caused by S. pyogenes remain limited, primarily involving contact chemoprophylaxis where clusters arise. Analysis of UK Strep-EURO data were used to quantify the risk to household contacts of cases, forming the basis of national guidance on the management of infection. Vaccines currently under development could offer a more effective control programme in future. Surveillance of invasive infections caused by S. pyogenes is of considerable public health importance as a means of identifying long and short-term trends in incidence, allowing the need for, or impact of, public health measures to be evaluated. As a dynamic pathogen co-existing among a dynamic population, new opportunities for exploitation of its human host are likely to arise periodically, and as such continued monitoring remains essential.
Resumo:
This project describes how Streptococcus agalactiae can be transmitted experimentally in Queensland grouper. The implications of this research furthers the relatedness between Australian S. agalactiae strains from animals and humans. Additionally, this research has developed diagnostic tools for Australian State Veterinary Laboratories and Universities, which will assist in State and National aquatic animal disease detection, surveillance, disease monitoring and reporting
Resumo:
Recognized around the world as a powerful beacon for freedom, hope, and opportunity, the Statue of Liberty's light is not just metaphorical: her dramatic illumination is a perfect example of American ingenuity and engineering. Since the statue's installation in New York Harbor in 1886, lighting engineers and designers had struggled to illuminate the 150-foot copper-clad monument in a manner becoming an American icon. It took the thoughtful and creative approach of Howard Brandston-a legend in his own right-to solve this lighting challenge. In 1984, the designer was asked to give the statue a much-needed lighting makeover in preparation for its centennial. In order to avoid the shortcomings of previous attempts, he studied the monument from every angle and in all lighting conditions, discovering that it looked best in the light of dawn. Brandston determined that he would need 'one lamp to mimic the morning sun and one lamp to mimic the morning sky.' Learning that no existing lamps could simulate these conditions, Brandston partnered with General Electric to develop two new metal halide products. With only a short time for R&D, a team of engineers at GE's Nela Park laboratories assembled a 'top secret' testing room dedicated to the Statue of Liberty project. After nearly two years of work to perfect the new lamps, the 'dawn's early light' effect was finally achieved just days before the centennial celebrations were to take place in 1986. 'It was truly a labor of love,' he recalls.
Resumo:
This Working Paper reports the background to the first stage of the ongoing research project, The Quest for Well-being in Growth Industries: A Collaborative Study in Finland and Scotland, conducted under the auspices of the Academy of Finland research programme The Future of Work and Well-being (2008-2011). This collaborative project provides national and transnational data, analysis and outputs. The study is being conducted in the Department of Management and Organisation, Hanken School of Economics, Finland, in collaboration with Glasgow Caledonian University, University of East London, Heriot-Watt University and Reading University, UK. The project examines policies and practices towards the enhancement of work-related well-being in growth industries, and contradictory pressures and tensions posed in this situation. The overall aim is to evaluate the development, implementation and use of work-related well-being policies in four selected growth industries. These sectors – electronics, care, finance and accounting, and tourism – have been selected on the basis of European Union and national forecasts, and demographic and socio-economic trends in employment. In this working paper we outline the background to the research study, the initial research plan, and how the survey of employers has been constructed. The working paper concludes with a brief discussion of general ongoing research issues arising in the project.
Resumo:
Instituições de Ensino e Pesquisa possuem um papel fundamental na formação de seus profissionais considerando a ciência, tecnologia e o conhecimento que afetam toda a sociedade. A falta de um programa de gestão de resíduos, na maioria das instituições de ensino e pesquisa do país, tem levado, com certa frequência, a um descarte pouco responsável dos materiais residuais no ambiente, através das pias dos laboratórios ou do lixo comum, ou em muitos casos, resultando na geração de passivos ambientais acumulados precariamente por longo tempo à espera de um eventual tratamento. Entretanto, essas Instituições de Ensino Superior (IES), através de suas atividades de pesquisa, ensino e extensão, acabam gerando resíduos químicos perigosos, como os de laboratórios químicos. Nas Universidades, o volume de resíduos gerados é muito pequeno, porém a diversidade de resíduos é muito grande, o que dificulta o tratamento dos mesmos. Os resíduos químicos perigosos gerados no Instituto de Química situado no Pavilhão Reitor Haroldo Lisboa da Cunha da Universidade do Estado do Rio de Janeiro, necessitam de procedimentos seguros de manejo para a sua passivação e/ou disposição final, já que eles requerem um descarte distinto daquele dado ao lixo doméstico, conforme estabelecidos na legislação. Este trabalho objetiva estudar os aspectos de gestão, saúde e segurança do trabalho relacionado ao manejo de resíduos gerados em laboratórios químicos, potencialmente perigosos, enfocando ações preventivas de minimização dos resíduos e o seu tratamento, particularmente nas fontes geradoras, estudando o caso dos laboratórios de Química Geral e Inorgânica comparando-os com o laboratório de Engenharia e Tecnologia de Petróleo e Petroquímica. O trabalho classificou-se como pesquisa exploratória e empírica através do estudo de caso. A metodologia utilizada constituiu-se da aplicação de um questionário, dirigido aos técnicos dos laboratórios, e observações, para avaliação do manejo de resíduos químicos perigosos de forma a propor uma possível adequação dos laboratórios às legislações vigentes, como as resoluções NBR RDC 306/04, CONAMA 358/05, das Fichas de Informação de Segurança, das Normas Regulamentadoras e a OHSAS 18001/07. Os resultados obtidos demonstram que os dois laboratórios estudados de Química Geral e Inorgânica não atendem, ainda, o que preconiza a legislação RDC 306/04 da ANVISA. Observa-se que os resíduos químicos perigosos são manejados inadequadamente, expondo a graves riscos físicos, químicos e de acidentes para os usuários dos laboratórios, além da poluição ambiental gerado pelo lançamento dos efluentes nas redes de esgoto, sem tratamento. O estudo corrobora para a necessidade da implementação do Programa de Gerenciamento de Resíduos Químicos Perigosos, da criação de uma Coordenação de Gestão Ambiental presidida por um especialista da área, da construção de saídas de emergência, com escadas de escape externo para os laboratórios estudados e, sobretudo, de capacitação permanente dos funcionários e alunos.