903 resultados para Gaussian curvature
Resumo:
To analyse and compare standing thoracolumbar curves in normal weight participants and participants with obesity, using an electromagnetic device, and to analyse the measurement reliability. Material and Methods. Cross-sectional study was carried out. 36 individuals were divided into two groups (normal-weight and participants with obesity) according to their waist circumference. The reference points (T1–T8–L1–L5 and both posterior superior iliac spines) were used to perform a description of thoracolumbar curvature in the sagittal and coronal planes. A transformation from the global coordinate system was performed and thoracolumbar curves were adjusted by fifth-order polynomial equations. The tangents of the first and fifth lumbar vertebrae and the first thoracic vertebra were determined from their derivatives. The reliability of the measurement was assessed according to the internal consistency of the measure and the thoracolumbar curvature angles were compared between groups. Results. Cronbach’s alpha values ranged between 0.824 (95% CI: 0.776–0.847) and 0.918 (95% CI: 0.903–0.949). In the coronal plane, no significant differences were found between groups; however, in sagittal plane, significant differences were observed for thoracic kyphosis. Conclusion. There were significant differences in thoracic kyphosis in the sagittal plane between two groups of young adults grouped according to their waist circumference.
Resumo:
Agility is an essential part of many athletic activities. Currently, agility drill duration is the sole criterion used for evaluation of agility performance. The relationship between drill duration and factors such as acceleration, deceleration and change of direction, however, has not been fully explored. This paper provides a mathematical description of the relationship between velocity and radius of curvatures in an agility drill through implementation of a power law (PL). Two groups of skilled and unskilled participants performed a cyclic forward/backward shuttle agility test. Kinematic data was recorded using motion capture system at a sampling rate of 200 Hz. The logarithmic relationship between tangential velocity and radius of curvature of participant trajectories in both groups was established using the PL. The slope of the regression line was found to be 0.26 and 0.36, for the skilled and unskilled groups, respectively. The magnitudes of regression line slope for both groups were approximately 0.3 which is close to the expected 1/3 value. Results are an indication of how the PL could be implemented in an agility drill thus opening the way for establishment of a more representative measure of agility performance instead of drill duration.
Resumo:
The recently discovered twist phase is studied in the context of the full ten-parameter family of partially coherent general anisotropic Gaussian Schell-model beams. It is shown that the nonnegativity requirement on the cross-spectral density of the beam demands that the strength of the twist phase be bounded from above by the inverse of the transverse coherence area of the beam. The twist phase as a two-point function is shown to have the structure of the generalized Huygens kernel or Green's function of a first-order system. The ray-transfer matrix of this system is exhibited. Wolf-type coherent-mode decomposition of the twist phase is carried out. Imposition of the twist phase on an otherwise untwisted beam is shown to result in a linear transformation in the ray phase space of the Wigner distribution. Though this transformation preserves the four-dimensional phase-space volume, it is not symplectic and hence it can, when impressed on a Wigner distribution, push it out of the convex set of all bona fide Wigner distributions unless the original Wigner distribution was sufficiently deep into the interior of the set.
Resumo:
We present two six-parameter families of anisotropic Gaussian Schell-model beams that propagate in a shape-invariant manner, with the intensity distribution continuously twisting about the beam axis. The two families differ in the sense or helicity of this beam twist. The propagation characteristics of these shape-invariant beams are studied, and the restrictions on the beam parameters that arise from the optical uncertainty principle are brought out. Shape invariance is traced to a fundamental dynamical symmetry that underlies these beams. This symmetry is the product of spatial rotation and fractional Fourier transformation.
Resumo:
High mechanical stress in atherosclerotic plaques at vulnerable sites, called critical stress, contributes to plaque rupture. The site of minimum fibrous cap (FC) thickness (FCMIN) and plaque shoulder are well-documented vulnerable sites. The inherent weakness of the FC material at the thinnest point increases the stress, making it vulnerable, and it is the big curvature of the lumen contour over FC which may result in increased plaque stress. We aimed to assess critical stresses at FCMIN and the maximum lumen curvature over FC (LCMAX) and quantify the difference to see which vulnerable site had the highest critical stress and was, therefore, at highest risk of rupture. One hundred patients underwent high resolution carotid magnetic resonance (MR) imaging. We used 352 MR slices with delineated atherosclerotic components for the simulation study. Stresses at all the integral nodes along the lumen surface were calculated using the finite-element method. FCMIN and LCMAX were identified, and critical stresses at these sites were assessed and compared. Critical stress at FC MIN was significantly lower than that at LCMAX (median: 121.55 kPa; inter quartile range (IQR) = [60.70-180.32] kPa vs. 150.80 kPa; IQR = [91.39-235.75] kPa, p < 0.0001). If critical stress at FCMIN was only used, then the stress condition of 238 of 352 MR slices would be underestimated, while if the critical stress at LCMAX only was used, then 112 out of 352 would be underestimated. Stress analysis at FCMIN and LCMAX should be used for a refined mechanical risk assessment of atherosclerotic plaques, since material failure at either site may result in rupture.
Resumo:
We show that a closed orientable Riemannian n-manifold, n >= 5, with positive isotropic curvature and free fundamental group is homeomorphic to the connected sum of copies of Sn-1 x S-1.
Resumo:
An exact expression for the calculation of gaussian path integrals involving non-local potentials is given. Its utility is demonstrated by using it to evaluate a path integral arising in the study of an electron gas in a random potential.
Resumo:
The laminar flow of a fairly concentrated suspension (in which the volume fraction Z of the solid particles < 0.4) in a spatially varying periodically curved pipe has been examined numerically. Unlike the case of interacting suspension flows, the particles are found to flow in a well-mixed fashion, altering both the axial and circumferential velocities and consequently the fluid flux in the tube, depending on their diffusivity and inertia. The magnitude of shear stress at the wall is enhanced, suggesting that, if applied to vascular system, the vascular wall could be prone to ulceration during pathological situations like polycythemia. The delay in adaptation of the deviation in Poiseuille flow velocity to the curvature changes is also discussed in detail.
Resumo:
Pseudo-marginal methods such as the grouped independence Metropolis-Hastings (GIMH) and Markov chain within Metropolis (MCWM) algorithms have been introduced in the literature as an approach to perform Bayesian inference in latent variable models. These methods replace intractable likelihood calculations with unbiased estimates within Markov chain Monte Carlo algorithms. The GIMH method has the posterior of interest as its limiting distribution, but suffers from poor mixing if it is too computationally intensive to obtain high-precision likelihood estimates. The MCWM algorithm has better mixing properties, but less theoretical support. In this paper we propose to use Gaussian processes (GP) to accelerate the GIMH method, whilst using a short pilot run of MCWM to train the GP. Our new method, GP-GIMH, is illustrated on simulated data from a stochastic volatility and a gene network model.
Resumo:
This paper considers the applicability of the least mean fourth (LM F) power gradient adaptation criteria with 'advantage' for signals associated with gaussian noise, the associated noise power estimate not being known. The proposed method, as an adaptive spectral estimator, is found to provide superior performance than the least mean square (LMS) adaptation for the same (or even lower) speed of convergence for signals having sufficiently high signal-to-gaussian noise ratio. The results include comparison of the performance of the LMS-tapped delay line, LMF-tapped delay line, LMS-lattice and LMF-lattice algorithms, with the Burg's block data method as reference. The signals, like sinusoids with noise and stochastic signals like EEG, are considered in this study.
Resumo:
Gaussian processes (GPs) are promising Bayesian methods for classification and regression problems. Design of a GP classifier and making predictions using it is, however, computationally demanding, especially when the training set size is large. Sparse GP classifiers are known to overcome this limitation. In this letter, we propose and study a validation-based method for sparse GP classifier design. The proposed method uses a negative log predictive (NLP) loss measure, which is easy to compute for GP models. We use this measure for both basis vector selection and hyperparameter adaptation. The experimental results on several real-world benchmark data sets show better orcomparable generalization performance over existing methods.
Resumo:
Recent laboratory investigations have shown that rotation and (streamwise) curvature can have spectacular effects on momentum transport in turbulent shear flows. A simple model that takes account of these effects (based on an analogy with buoyant flows) utilises counterparts of the Richardson number Rg and the Monin-Oboukhov length. Estimates of Rg for meanders in ocean currents like the Gulf Stream show it to be of order 1 or more, while laboratory investigations reveal strong effects even at |Rg|∼0·1. These considerations lead to the conclusion that at a cyclonic bend in the Gulf Stream, a highly unstable flow in the outer half of the jet rides over a highly stable flow in the inner half. It is conjectured that the discrepancies noticed between observation and the various theories of Gulf Stream meanders, and such phenomena as the observed detachment of eddies from the Gulf Stream, may be due to the effects of curvature and rotation on turbulent transport.
Resumo:
The Gaussian probability closure technique is applied to study the random response of multidegree of freedom stochastically time varying systems under non-Gaussian excitations. Under the assumption that the response, the coefficient and the excitation processes are jointly Gaussian, deterministic equations are derived for the first two response moments. It is further shown that this technique leads to the best Gaussian estimate in a minimum mean square error sense. An example problem is solved which demonstrates the capability of this technique for handling non-linearity, stochastic system parameters and amplitude limited responses in a unified manner. Numerical results obtained through the Gaussian closure technique compare well with the exact solutions.
Resumo:
We obtain stringent bounds in the < r(2)>(K pi)(S)-c plane where these are the scalar radius and the curvature parameters of the scalar K pi form factor, respectively, using analyticity and dispersion relation constraints, the knowledge of the form factor from the well-known Callan-Treiman point m(K)(2)-m(pi)(2), as well as at m(pi)(2)-m(K)(2), which we call the second Callan-Treiman point. The central values of these parameters from a recent determination are accomodated in the allowed region provided the higher loop corrections to the value of th form factor at the second Callan-Treiman point reduce the one-loop result by about 3% with F-K/F-pi = 1.21. Such a variation in magnitude at the second Callan-Treiman point yields 0.12 fm(2) less than or similar to < r(2)>(K pi)(S) less than or similar to 0.21 fm(2) and 0.56 GeV-4 less than or similar to c less than or similar to 1.47 GeV-4 and a strong correlation between them. A smaller value of F-K/F-pi shifts both bounds to lower values.
Resumo:
Purpose Transient changes in corneal topography associated with soft and conventional or reverse geometry rigid contact lens wear have been well documented; however, only a few studies have examined the influence of scleral contact lens wear upon the cornea. Therefore, in this study, we examined the influence of modern miniscleral contact lenses, which land entirely on the sclera and overlying tissues, upon anterior corneal curvature and optics. Methods Anterior corneal topography and elevation data were acquired using Scheimpflug imaging (Pentacam HR, Oculus) immediately prior to and following 8 hours of miniscleral contact lens wear in 15 young healthy adults (mean age 22 ± 3 years, 8 East Asian, 7 Caucasian) with normal corneae. Corneal diurnal variations were accounted for using data collected on a dedicated measurement day without contact lens wear. Corneal clearance was quantified using an optical coherence tomographer (RS-3000, Nidek) following lens insertion and after 8 hours of lens wear. Results Although corneal clearance was maintained throughout the 8 hour lens wear period, significant corneal flattening (up to 0.08 ± 0.04 mm) was observed, primarily in the superior mid-peripheral cornea, which resulted in a slight increase in against-the-rule corneal astigmatism (mean +0.02/-0.15 x 94 for an 8 mm diameter). Higher order aberration terms of horizontal coma, vertical coma and spherical aberration all underwent significant changes for an 8 mm corneal diameter (p ≤ 0.01), which typically resulted in a decrease in RMS error values (mean change in total higher order RMS -0.035 ± 0.046 µm for an 8 mm diameter). There was no association between the magnitude of change in central or mid-peripheral corneal clearance during lens wear and the observed changes in corneal curvature (p > 0.05). However, Asian participants displayed a significantly greater reduction in corneal clearance (p = 0.04) and greater superior-nasal corneal flattening compared to Caucasians (p = 0.048). Conclusions Miniscleral contact lenses that vault the cornea induce significant changes in anterior corneal surface topography and higher order aberrations following 8 hours of lens wear. The region of greatest corneal flattening was observed in the superior-nasal mid-periphery, more so in Asian participants. Practitioners should be aware that corneal measurements obtained following miniscleral lens removal may mask underlying corneal steepening.