960 resultados para Gastrointestinal transit


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Medicina Veterinária - FMVZ

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Zootecnia - FCAV

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Biologia Geral e Aplicada - IBB

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ciências Farmacêuticas - FCFAR

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Zootecnia - FMVZ

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Zootecnia - FCAV

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study of gastrointestinal tract (GIT) functions is necessary due to the increasing number of pathologies associated with it. Directly influencing the quality of life, the gastrointestinal tract provides a number of parameters that, when analyzed, allow us to describe its dysfunctions. Thus, many techniques can be combined to obtain these properties related to the GIT. However, these techniques are often invasive, require surgery, catheter insertion, or to build a temporal model of these functions, require the sacrifice of animals in a series of data collection. The technique used in this study has the advantage of having a low operating cost, being free of ionizing radiation, non-invasive and is known as biosusceptometry AC (BAC), used to evaluate the properties of the GI tract by monitoring the position and concentration of materials magnetically marked. The sensor consists of two pairs of coils, one reference and one for detection. A fixed base line separates the sensing and reference coils, and also functions as support for the instrumentation. It is also important to note that the detection coils are arranged in a first order (subtraction) gradiometric way. The objective of this study was to analyze the effects of gastrectomy in gastric emptying and gastrointestinal transit time of solid food in rats using a BAC system associated with magnetic markers. To realize this study was constructed a dedicated BAC sensor, built to analyze these GIT properties. Data acquisition was obtained by aligning the magnetic sensor with the stomach and colon of the animal at pre-determined intervals. Thus, when approaching the magnetic material of the sensor, the balance created between the two sides of the sensor is broken. This imbalance can be measured, digitized and acquired. Tracer was used as a ration magnetically marked with ferrite... (Complete abstract click electronic access below)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The gastrointestinal tract is the main route of nutrients absorption and drugs delivery. Is important to know the parameters related to the tract, like gastric emptying and gastrointestinal transit, in order to better understand the behavior of different kind of meals or drugs passing through the GIT. Many techniques are used to study these parameters, such as manometry, scintigraphy, phenol red, activated charcoal and carbon-13 reading. However, these methods use radiation, are invasive and require animal sacrifice. As an alternative proposal, the Alternate Current Biosusceptometry (ACB), a magnetic technique, has proved to be effective for these studies with small animals, in a noninvasive way, low cost, radiation free and avoiding the animal death. Associating the ACB to magnetic micro or nanoparticles used as tracers, it is possible to observe the meal behavior inside of the GIT. Focusing meanly on liquid meals digestion, this paper had the objective to evaluate the efficiency of the ACB technique in gastric emptying and gastrointestinal transit evaluation of liquid meals in rats. To perform the experiments, magnetic nanoparticles (ferrite, MgFe2O4) were used on a 1,5 ml solution introduced by gavage on similar weight and age rats. The sensor made by 2 pairs of coils, capable of generating and detecting magnetic fields, creates a field on the interest place and when this field is in contact with the marked meal, it changes, resulting on a variation of the measured voltage. The voltage variation is analyzed and is obtained a particle concentration on the interest region. The results showed that is possible to apply the ACB technique on the GIT evaluation of liquid particles digestion, gastric emptying and meal cecum arrival time curves were obtained and from that, is possible to observe a pattern of gastrointestinal transit. Both mean process time values were acquired, proving the technique capability of ...

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Cirurgia Veterinária - FCAV

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Oral administration is the most convenient route for drug therapy. The knowledge of the gastrointestinal transit and specific site for drug delivery is a prerequisite for development of dosage forms. The aim of this work was to demonstrate that is possible to monitor the disintegration process of film-coated magnetic tablets by multi-sensor alternate current Biosusceptometry (ACB) in vivo and in vitro. This method is based on the recording of signals produced by the magnetic tablet using a seven sensors array and signal-processing techniques. The disintegration was confirmed by signals analysis in healthy human volunteers' measurements and in vitro experiments. Results showed that ACB is efficient to characterize the disintegration of dosage forms in the stomach, being a research tool for the development of new pharmaceutical dosage forms.