65 resultados para Garnets
Resumo:
Magnetic iron garnets as well as magnetic photonic crystals are of great interests in magneto-optic applications such as isolators, current captors, circulators, TE-TM mode conversion, wavelength accordable filters, optical sensors and switches, all of which provide a promising platform for future integrated optical circuits. In the present work, two topics are studied based on magnetic iron garnet films. In the first part, the characteristics of the magnetization are investigated for ridge waveguides fabricated on (100) oriented iron garnet thin films. The magnetic response in magneto-optic waveguides patterned on epitaxial magnetic garnet films depends on the crystallographic orientation of the waveguides and the magnetic anisotropy of the material. These can be studied by polarization rotation hysteresis loops, which are related to the component of magnetization parallel to the light propagation direction and the linear birefringence. Polarization rotation hysteresis loops for low birefringence waveguides with different orientations are experimentally investigated. Asymmetric stepped curves are obtained from waveguides along, due to the large magnetocrystalline anisotropy in the plane. A model based on the free energy density is developed to demonstrate the motion of the magnetization and can be used in the design of magneto-optic devices. The second part of this thesis focuses on the design and fabrication of high-Q cavities in two-dimensional magneto-photonic crystal slabs. The device consists of a layer of silicon and a layer of iron garnet thin film. Triangular lattice elliptical air holes are patterned in the slab. The fundamental TM band gap overlaps with the first-order TE band gap from 0374~0.431(a/λ) showing that both TE and TM polarization light can be confined in the photonic crystals. A nanocavity is designed to obtain both TE and TM defect modes in the band gaps. Additional work is needed to overlap the TE and TM defect modes and obtain a high-Q cavity so as to develop miniaturized Faraday rotators.
Resumo:
The application of photonic crystal technology on metal-oxide film is a very promising field for future optical telecommunication systems. Band gap and polarization effects in lithium niobate (LiNbO3) photonic crystals and bismuth-substituted iron garnets (BiYIG) photonic crystals are investigated in this work reported here. The design and fabrication process are similar for these two materials while the applications are different, involving Bragg filtering in lithium niobate and polarization rotation in nonreciprocal iron garnets. The research of photonic structures in LiNbO3 is of high interest for integrated device application due to its remarkable electro-optical characteristics. This work investigated the photonic band gap in high quality LiNbO3 single crystalline thin film by ion implantation to realize high efficiency narrow bandwidth filters. LiNbO3 thin film detachment by bonding is also demonstrated for optical device integration. One-dimensional Bragg BiYIG waveguides in gyrotropic system are found to have multiple stopbands and evince enhancement of polarization rotation efficiency. Previous photon trapping theory cannot explain the phenomena because of the presence of linear birefringence. This work is aimed at investigating the mechanism with the support of experiments. The results we obtained show that selective suppression of Bloch states in gyrotropic bandgaps is the key mechanism for the observed phenomena. Finally, the research of ferroelectric single crystal PMN-PT with ultra high piezoelectric coefficient as a biosensor is also reported. This work presents an investigation and results on higher sensitivity effects than conventional materials such as quartz and lithium niobate.
Resumo:
Diamonds of eclogitic assemblages are dominant in the placer diamond deposits of the northeastern Siberian platform. In this study we present new trace elements and stable isotopes (δ13C and δ18O) data for alluvial diamonds and their garnet inclusions from this locality. Cr-rich garnets of peridotitic affinity in the studied diamonds have a narrow range of δ18O values from 5.7‰ to 6.2‰, which is largely overlapping with the accepted mantle range. This narrow range suggests that the garnet inclusions showing different REE patterns and little variations in oxygen isotopes may have formed by different processes involving fluid/melts that, however, were in oxygen isotopic equilibrium with the mantle. The trace element composition of the eclogitic garnet inclusions supports a crustal origin for at least the high-Ca garnets, which show flat HREE patterns and in some cases a positive Eu-anomaly. High-Ca eclogitic garnets generally show heavier oxygen isotope compositions (δ18O 6.5–9.6‰) than what is observed in low-Ca garnets (δ18O 5.7–7.4‰). The variability in oxygen isotopes and trace elements is suggested to be inherited from contrasting crustal protoliths. The relationship between the high δ18O values of inclusions and the low δ13C values of the host diamonds implies that the high-Ca garnet inclusions were derived from intensely hydrated (e.g., δ18O > 7‰) and typically oxidised basaltic rock close to the seawater interface, and that the carbon for diamonds was closely associated with this protolith.
Resumo:
Recycling of oceanic crust into the deep mantle via subduction is a widely accepted mechanism for creating compositional heterogeneity in the upper mantle and for explaining the distinct geochemistry of mantle plumes. The oxygen isotope ratios (d18O) of some ocean island basalts (OIB) span values both above and below that of unmetasomatised upper mantle (5.5 ± 0.4 per mil) and provide support for this hypothesis, as it is widely assumed that most variations in d18O are produced by near-surface low-temperature processes. Here we show a significant linear relationship between d18O and stable iron isotope ratios (d57Fe) in a suite of pristine eclogite xenoliths. The d18O values of both bulk samples and garnets range from values within error of normal mantle to significantly lighter values. The observed range and correlation between d18O and d57Fe is unlikely to be inherited from oceanic crust, as d57Fe values determined for samples of hydrothermally altered oceanic crust do not differ significantly from the mantle value and show no correlation with d18O. It is proposed that the correlated d57Fe and d18O variations in this particular eclogite suite are predominantly related to isotopic fractionation by disequilibrium partial melting although modification by melt percolation processes cannot be ruled out. Fractionation of Fe and O isotopes by removal of partial melt enriched in isotopically heavy Fe and O is supported by negative correlations between bulk sample d57Fe and Cr content and bulk sample and garnet d18O and Sc contents, as Cr and Sc are elements that become enriched in garnet- and pyroxene-bearing melt residues. Melt extraction could take place either during subduction, where the eclogites represent the residues of melted oceanic lithosphere, or could take place during long-term residence within the lithospheric mantle, in which case the protoliths of the eclogites could be of either crustal or mantle origin. This modification of both d57Fe and d18O by melting processes and specifically the production of low-d18O signatures in mafic rocks implies that some of the isotopically light d18O values observed in OIB and eclogite xenoliths may not necessarily reflect near-surface processes or components.
Resumo:
On Elan Bank, a southwestern promontory of the Kerguelen Plateau in the southern Indian Ocean, we cored an interval of conglomerate and minor sandstone within a thick section of Cretaceous flood basalts. Most of the detritus in these sedimentary rocks is volcanic with the exception of a small amount of conspicuous material of probable continental derivation. The anomalous clasts include several pebbles of gneiss (Nicolaysen et al., 2001, doi:10.1130/0091-7613(2001)029<0235:POPGBG>2.0.CO;2) and garnet sand grains. The presence of continental material on the plateau bears significantly on the interpretation of Indian Ocean basalts (Weis et al., 2001, doi:10.1130/0091-7613(2001)029<0147:OOCCII>2.0.CO;2). The purpose of the present study was to determine the composition of the garnets to provide additional constraints on the nature of the source area.
Resumo:
During the GEISHA expedition (Geologische Expedition in die Shackleton Range 1987/88), the Pioneers Escarpment was visited and sampled extensively for the first time. Most of the rock types encountered represent amphibolite facies metamorphics, but evidence for granulite facies conditions was found in cores of garnet. These conditions must have been at least partly reached during the peak of metamorphism. For the Pioneers Escarpment a varicolored succession of sedimentary and bimodal volcanic origin is typical. It comprises: quartzites muscovite quartzite, sericite quartzite, fuchsite quartzite, garnet-quartz schists etc.; pelites: mica schists and plagioclase or plagioclase-microcline gneisses, aluminous schists; marls and carbonates: grey meta-limestones, carbonaceous quartzites, but also pure white, often fine-grained, saccharoidal marble, or a variety of tremolite marble, olivine (forsterite) marble, diopside-clinopyroxene-tremolite marble, etc.; basic volcanic rocks: amphibole fels, amphibolite schist, garnet amphibolite, and acidic to intermediate volcanic rocks: garnet-biotite schist, epidote-biotite-plagioclase gneiss, microcline gneiss. These rocks are considered to be a supracrustal unit, called the Pioneers Group. In the easternmost parts of the Pioneers Escarpment, e.g. at Vindberget, nonmetamorphic shales, sandstones and greywackes crop out, which are cover rocks of possibly Jurassic age. These metasediments, which represent a quartz-pelite-carbonate (QPC) association, indicate that deposition took place on a stable shelf, i.e. on the submerged rim of a craton. Marine shallow-water sedimentation including marls and aluminous clays form the protoliths. The volcanics may be part of a bimodal volcanics-arkose-conglomerate (BVAC) association. Geochemical analyses support the assumption of volcanic protoliths. This is demonstrated especially by the elevated amounts of the immobile, incompatible high-field-strength elements (HFSE) Nb, Ta, Ti, Y, and Zr encountered in some of the gneisses. Microscopic investigation suggests the existence of ortho-amphibolites. This is confirmed by the geochemistry. A bimodal volcanic association is evident. The amphibolites plot in both the tholeiite and calc-alkaline fields. The acidic volcanics are mainly rhyolitic. The sediments and volcanics were subjected to conditions of 10-11 kbar and 600°C during the peak of metamorphism, i.e. granulite facies metamorphism, which can be deduced from the Fe mole ratios of 0.71-0.73 in the garnet cores. Due to the relatively low temperatures, no anatectic melting took placc. The rims of the garnets show a Fe mole ratio of 0.84-0.86, and the coexisting mineral association garnet-biotite-staurolite-kyanite indicate amphibolite facies. The thermobarometry shows P-T conditions of 5-6 kbar and 570-580°C for this stage. The metamorphic history indicates deep burial at depths down to 35 km (subduction?) i.e. high pressure metamorphism, followed by pressure release due to uplift associated with retrograde metamorphism. This may have happened during a pre-Ross metamorphic event or orogeny. The Ross Orogeny at about 500 Ma probably just led to the weak greenschist facies overprint that is evident in the rocks of the Pioneers Group. Finally, sedimentation resumed in the area of the present Shackleton Range, or at least in the eastern part of the Pioneers Escarpment, probably when detritus from erosion of the basement (Read Group and Pioneers Group) was deposited, forming sandstones and greywackes of possibly Jurassic age. There is no indication that these sediments belong to the former Turnpike Bluff Group.
Resumo:
Cores from the upper 70 meters below seafloor (mbsf) (upper Pleistocene) at Ocean Drilling Program (ODP) Site 645 in Baffin Bay show dramatic meter-scale changes in color and mineralogy. Below this interval, mineralogical changes are more gradual to the top of the Miocene at about 550 mbsf. The Pliocene-Pleistocene section can be divided into five facies: Facies 1 - massive, poorly sorted, gravel-bearing muds; Facies 2 - gray silty clays and silty muds; Facies 3 - laminated detricarbonate silty muds; Facies 4 - silty sand and sandy silt; and Facies 5 - poorly sorted muddy sands and silty muds. Facies 4 and 5 are restricted to the Pliocene section below depths of about 275 mbsf. The mineralogical/color cycles in the upper 70 mbsf are the result of alternations between Facies 2 and three lithotypes of Facies 1: lithotype A - tan-colored, carbonate-rich, gravel-bearing mud; lithotype B - weak, red-colored, gravel-bearing mud rich in sedimentary rock fragments; and lithotype C - gray, gravel-bearing mud. A fourth lithotype, D, is restricted to depths of 168-275 mbsf and is dark gray, carbonate-poor, gravel-bearing mud. We believe that all lithotypes of Facies 1 and the sand and gravel fractions of Facies 2 and 3 were deposited by ice rafting. Depositional processes for Facies 4 and 5 probably include ice rafting and bottom- and turbidity-current transport. Data from petrographic analyses of light and heavy sand-sized grains and X-ray analyses of silt- and clay-size fractions suggest that tan-colored sediments (lithotype A of Facies 1; Facies 3) were derived mainly from Paleozoic carbonates of Ellesmere, Devon, and northern Baffin islands. Weak red sediments (lithotype B) contain significant red sedimentary clasts, reworked quartzarenite grains and clasts, and rounded colorless garnets, all derived from Proterozoic sequences of the Borden and Thule basins, and from minor Mesozoic red beds. Other sediments in the upper 335 mbsf at Site 645 contain detritus from a heterogeneous mixture of sources, including Precambrian shield terranes around Baffin Bay. Sediments from 335 to 550 mbsf (Facies 5) are rich in friable sedimentary clasts and detrital micas and contain glauconite and, in a few samples, reworked diatoms. These components suggest derivation from poorly consolidated Mesozoic-Tertiary sediments in coastal outcrops and beneath the modern shelves of northeastern Baffin Island and western Greenland. For the upper Pleistocene section (about 0-100 mbsf), marked mineralogical cyclicity is attributed to fluctuating glacial margins, calving rates, and iceberg melting rates, particularly around the northern end of Baffin Bay. Tan-colored, carbonate-rich units were derived at times of maximum advance of glaciers on Ellesmere and Devon islands, during relatively warm intervals induced by incursion of warm Atlantic surface water into the bay. At the beginning of these warmer episodes, most icebergs were contributed by glaciers near sea level around the Arctic channels, which resulted in deposition of weak red, ice-rafted units rich in Proterozoic sedimentary clasts.
Resumo:
Constraining the nature of Antarctic Ice Sheet (AIS) response to major past climate changes may provide a window onto future ice response and rates of sea level rise. One approach to tracking AIS dynamics, and differentiating whole system versus potentially heterogeneous ice sheet sector changes, is to integrate multiple climate proxies for a specific time slice across widely distributed locations. This study presents new iceberg-rafted debris (IRD) data across the interval that includes Marine Isotope Stage 31 (MIS 31: 1.081-1.062 Ma, a span of ~19 kyr; Lisiecki and Raymo, 2005), which lies on the cusp of the mid-Brunhes climate transition (as glacial cycles shifted from ~41,000 yr to ~100,000 yr duration). Two sites are studied - distal Ocean Drilling Program (ODP) Leg 177 Site 1090 (Site 1090) in the eastern subantarctic sector of the South Atlantic Ocean, and proximal ODP Leg 188 Site 1165 (Site 1165), near Prydz Bay, in the Indian Ocean sector of the Antarctic margin. At each of these sites, MIS 31 is marked by the presence of the Jaramillo Subchron (0.988-1.072 Ma; Lourens et al., 2004) which provides a time-marker to correlate these two sites with relative precision. At both sites, records of multiple climate proxies are available to aid in interpretation. The presence of IRD in sediments from our study areas, which include garnets indicating a likely East Antarctic Ice Sheet (EAIS) origin, supports the conclusion that although the EAIS apparently withdrew significantly over MIS 31 in the Prydz Bay region and other sectors, some sectors of the EAIS must still have maintained marine margins capable of launching icebergs even through the warmest intervals. Thus, the EAIS did not respond in complete synchrony even to major climate changes such as MIS 31. Further, the record at Site 1090 (supported by records from other subantarctic locations) indicates that the glacial MIS 32 should be reduced to no more than a stadial, and the warm interval of Antarctic ice retreat that includes MIS 31 should be expanded to MIS 33-31. This revised warm interval lasted about 52 kyr, in line with several other interglacials in the benthic d18O records stack of Lisiecki and Raymo (2005), including the super-interglacials MIS 11 (duration of 50 kyr) and MIS 5 (duration of 59 kyr). The record from Antarctica-proximal Site 1165, when interpreted in accord with the record from ANDRILL-1B, indicates that in these southern high latitude sectors, ice sheet retreat and the effects of warming lasted longer than at Site 1090, perhaps until MIS 27. In the current interpretations of the age models of the proximal sites, ice sheet retreat began relatively slowly, and was not really evident until the start of MIS 31. In another somewhat more speculative interpretation, ice sheet retreat began noticeably with MIS 33, and accelerated during MIS 31. Ice sheet inertia (the lag-times in the large-scale responses of major ice sheets to a forcing) likely plays an important part in the timing and scale of these events in vulnerable sectors of the AIS.
Resumo:
Sutton Hoo, England; cloisonne plaques of gold, glass & enamel with garnets & emeralds
Resumo:
Bimaran, Darunta, Afghanistan; 2 9/16 in.x 2 19/32 in.; gold with garnets
Resumo:
Bimaran, Darunta, Afghanistan; 2 9/16 in.x 2 19/32 in.; repoussé, gold and garnets
Resumo:
Three metamorphic aureoles around intrusions of the Caledonian 'Newer Granite' suite are described. Each represents a different orogenic environment. The Strontian complex is intruded into sillimanite grade Moinian metasediments at the core of the orogen. The aureole comprises three zones; a transitional muscovite + sillimanite + K-feldspar zone, a sillimanite + K-feldspar zone and an inner cordierite + K-feldspar zone. Contact migmatization occurs in the inner part of the aureole. Zoning profiles from garnets in both regional and aureole assemblages show retrograde Mn-rich rims. Fe and Mg compositions are re-equilibrated to contact conditions. Apparent re-equilibration of Ca compositions results from increasingly ideal solid solution behaviour of Ca in plagioclase and garnet with increasing temperature. Temperatures of 690°C at 4.1 kbar (XH2O = 0.53) are estimated in the cordierite + K-feldspar zone, dropping to 630°C (XH2O = 0.69) at the sillimanite + K-feldspar isograd. The zones increase in width to the east, influenced by the regional thermal gradient at the time of intrusion. The timer-scale of the contact event, t2, relative to the regional, tl, - is estimated as t2/t1 = 101.1+ -0.7 and is consistent with Intrusion at an early stage of regional uplift and cooling. The Foyers complex intrudes Moinian rocks at a higher structural level. Regional assemblages range from garnet to sillimanite grade. Three contact zones are recognised; a sillimanite zone, a sillimanite + K-feldspar zone and an inner cordierite + K-feldspar zone. The limit of the aureole is marked by the breakdown of garnet which shows disequilibrium, both texturally, and in complex zoning profiles, within it. Temperatures of 660°C at 3.9 kbar (XH20 = 0.14) are estimated in the cordierite + K-feldspar zone? The Dalbeattie complex is at the margin of the orogen, intruded into low grade Silurian metasediments. Two zones are recognised; a biotite zone and an inner hornblende zone. Cordierite and diopside are present in the inner zone.
Resumo:
This thesis describes the geology, geochemistry and mineralogy of a Lower Proterozoic, metamorphosed volcanogenic Cu-Zn deposit, situated at the western end of the Flin Flon greenstone belt. Stratabound copper mineralisation occurs in silicified and chloritoid-bearing alteration assemblages within felsic tuffs and is mantled by thin (< 3m) high-grade sphalerite layers. Mineralisation is underlain by garnet-hornblende bearing Lower Iron Formation (LIF), and overlain by garnet-grunerite bearing Upper Iron Formation (UIF). Distinctive trace element trends, involving Ti and Zr, in mineralised and footwall felsic tuffs are interpreted to have formed by fractionation associated with a high-level magma chamber in a caldera-type environment. Discrimination diagrams for basaltic rocks are interpreted to indicate their formation in an environment similar to that of recent, primitive, tholeiitic island arcs. Microprobe studies of key mineral phases demonstrate large and small scale chemical variations in silicate phases related to primary lithological, rather than metamorphic, controls. LIF is characterised by alumino-ferro-tschermakite and relatively Mn-poor, Ca-rich garnets, whereas UIF contains manganoan grunerite and Mn-rich garnets. Metamorphic mineral reactions are considered and possible precursor assemblages identified for garnet-, and chloritoid-bearing rocks. Chloritoid-bearing rocks are interpreted as the metamorphosed equivalents of iron-rich feeder zones formed near the surface. The iron-formations are thought to represent iron-rich sediments formed on the sea floor formed from the venting of the ore fluids. Consideration of various mineral assemblages leads to an estimate for peak metamorphic conditions of 450-500oC and > 4Kb total pressure. Comparisons with other volcanogenic deposits indicate affinities with deposits of `Mattabi-type' from the Archean of Ontario. An extrapolation of the main conclusions of the thesis to adjacent areas points to the presence of a number of geologically similar localities with potential for mineralisation.
Resumo:
Salt Lake Crater (SLC), on the island of Oahu, Hawaii, is best known for its wide variety of crustal and mantle xenoliths. SLC is only the second locality in oceanic regimes where deeper portions of the upper mantle (i.e., garnet-bearing xenoliths) have been sampled. These garnet-bearing xenoliths, that contain clinopyroxene (cpx), orthopyroxene (opx), olivine, and garnet, are the focus of this study Opx is present in small amounts. Cpx has exsolved opx, spinel, and garnet. In addition, many xenoliths contain spinel-cored garnets. In some xenoliths, opx crystals contain exsolved cpx and spinel. Olivine, cpx, and garnet are in chemical equilibrium with each other. Opx is not in chemical equilibrium with the other dominant minerals. ^ The origin of these xenoliths is interpreted on the basis of liquidus phase relations in the simplified system CaO-MgO-Al2O3-SiO 2 (CMAS) system at 3.0 and 5.0 GPa. The occurrence of spinel-cored garnets and the Ol-Cpx-Gt assemblage suggests that the depth of crystallization of the SLC xenoliths examined was ∼100–110 km (i.e., uppermost asthenosphere). ^ The experimental study is concerned with the equilibrium melting of garnet clinopyroxenite at 2.0–2.5 GPa and it explores the role of such melting process in the generation of tholeiitic and alkalic lavas in ocean island basalts (OIBs). The starting material is a tholeiitic picrite in terms of its normative composition. Its solidus temperature is 1295 ± 15°C and 1332 ± 15°C at 2.0 and 2.5 GPa, respectively. At 2.0 GPa, the liquidus phase is opx that is in reaction relation with the melt. It reacts out at ∼40°C below the liquidus as cpx and spinel appear. Garnet appears long after opx disappearance. Opx is absent in runs at 2.5 GPa. Cpx and garnet appear simultaneously on the liquidus at 2.5 GPa, and are the only assemblage throughout the melting interval. At both the pressures, the partial melts are olivine-hypersthene normative at high melt fraction ( F), becoming moderately to strongly nepheline-normative, as F decreases. It is concluded that the involvement of CO 2 (and perhaps H2O) is necessary for the generation of alkalic melts in most OIBs. ^
Resumo:
During the expeditions ARK-VII/1, ARK-VII/3 and ARK-Xl2 sediment cores were taken by "RV Polarstern" from the shelf and the fjords of East Greenland and the Greenland Sea. The magnetic susceptibility and heavy mineral were determined at 48 surface sediment samples from undisturbed box cores. The main objective of this study was the identification of source areas and transport processes of terrigenous sediments at the East Greenland continental margin. The results can be summarized as lollows: 1a) Magnetic susceptibility in the North Atlantic is useful to detect delivery regions of the material transported by currents. b) The magnetic susceptibility is controlled by the ferromagnetic particles of the silt fraction. c) There are four important source areas: . The ferromagnetic particles of the box core PS2644-2 are transported from the Iceland Archipelago. . The material from the Geiki-Plateau effects the magnetic susceptibility in the Scoresby Sund Basin. . The magnetic susceptibility in the shelf regions in the North are produced by material from the fjords. . The ferromagnetic particles in the Greenland Sea are derived from the Mid Atlantic Ridges in the east. d) It is possible to determine the rock type, which delivers the ferromagnetic material because of differences in magnetic susceptibility of different intensity. . The erosion of the basalts of the Geiki-Plateau and the basalts of the Mid Atlantic ridges produce the high magnetic susceptibility in the south. . The magnetic susceptibility on the shelf in the north are probably produced by erosionproducts of the gneises of East Greenland. (2a) Heavy mineral assemblages show a significant difference between material transported by the Transpolar Drift from the Eurasian shelf regions (amphiboles, clinopyroxene, orthopyroxene) and material derived from East Greenland (garnets and opaque minerals). Transport via ice is dominant. b) lt is also possible to show different petrographic provenances (volcanic and metamorphic provenances). These associations verify the source areas. c) The information of heavy mineral composition gives no more detailed hint on the rock type or rock formation in the source area, due to mixing processes, large area of investigation and the sample quantity.