980 resultados para Gamma-aminobutyric acid (GABA)
Resumo:
The light-evoked release of acetylcholine (ACh) affects the responses of many retinal ganglion cells, in part via nicotinic acetylcholine receptors (nAChRs). nAChRs that contain beta2alpha3 neuronal nicotinic acetylcholine receptors have been identified and localized in the rabbit retina; these nAChRs are recognized by the monoclonal antibody mAb210. We have examined the expression of beta2alpha3 nAChRs by glycinergic amacrine cells in the rabbit retina and have identified different subpopulations of nicotinic cholinoceptive glycinergic cells using double and triple immunohistochemistry with quantitative analysis. Here we demonstrate that about 70% of the cholinoceptive amacrine cells in rabbit retina are glycinergic cells. At least three nonoverlapping subpopulations of mAb210 glycine-immunoreactive cells can be distinguished with antibodies against calretinin, calbindin, and gamma-aminobutyric acid (GABA)(A) receptors. The cholinergic cells in rabbit retina are thought to synapse only on other cholinergic cells and ganglion cells. Thus, the expression of beta2alpha3 nAChRs on diverse populations of glycinergic cells is puzzling. To explore this finding, the subcellular localization of beta2alpha3 was studied at the electron microscopic level. mAb210 immunoreactivity was localized on the dendrites of amacrines and ganglion cells throughout the inner plexiform layer, and much of the labeling was not associated with recognizable synapses. Thus, our findings indicate that ACh in the mammalian retina may modulate glycinergic circuits via extrasynaptic beta2alpha3 nAChRs. (C) 2002 Wiley-Liss, Inc.
Resumo:
The hypothalamus is a forebrain structure critically involved in the organization of defensive responses to aversive stimuli. Gamma-aminobutyric acid (GABA)ergic dysfunction in dorsomedial and posterior hypothalamic nuclei is implicated in the origin of panic-like defensive behavior, as well as in pain modulation. The present study was conducted to test the difference between these two hypothalamic nuclei regarding defensive and antinociceptive mechanisms. Thus, the GABA A antagonist bicuculline (40 ng/0.2 µL) or saline (0.9% NaCl) was microinjected into the dorsomedial or posterior hypothalamus in independent groups. Innate fear-induced responses characterized by defensive attention, defensive immobility and elaborate escape behavior were evoked by hypothalamic blockade of GABA A receptors. Fear-induced defensive behavior organized by the posterior hypothalamus was more intense than that organized by dorsomedial hypothalamic nuclei. Escape behavior elicited by GABA A receptor blockade in both the dorsomedial and posterior hypothalamus was followed by an increase in nociceptive threshold. Interestingly, there was no difference in the intensity or in the duration of fear-induced antinociception shown by each hypothalamic division presently investigated. The present study showed that GABAergic dysfunction in nuclei of both the dorsomedial and posterior hypothalamus elicit panic attack-like defensive responses followed by fear-induced antinociception, although the innate fear-induced behavior originates differently in the posterior hypothalamus in comparison to the activity of medial hypothalamic subdivisions.
Resumo:
L’acide γ-aminobutyrique (GABA) est le principal neurotransmetteur inhibiteur du système nerveux central et est impliqué dans diverses pathologies incluant l’épilepsie, l’anxiété, la dépression et la dépendance aux drogues. Le GABA agit sur l’activité neuronale par l’activation de deux types de récepteurs; le canal chlorique pentamérique GABAA et l’hétérodimère obligatoire de récepteurs couplés aux protéines G (RCPG) GABAB. Chacun des récepteurs est responsable de phases distinctes de la réponse cellulaire au GABA. Lors d’une stimulation par le GABA, il est essentiel pour la cellule de pouvoir contrôler le niveau d’activité des récepteurs et au besoin, de limiter leur activation par des mécanismes de désensibilisation et de régulation négative. La désensibilisation nécessite le découplage du récepteur de ses effecteurs, ainsi que sa compartimentation hors de la membrane plasmique dans le but de diminuer la réponse cellulaire à l’agoniste. Les mécanismes de contrôle de l’activité de GABAB semblent anormaux pour un RCPG et sont encore mal moléculairement caractérisés. L’objet de cette thèse est d’étudier la régulation du récepteur GABAB et de sa signalisation par la caractérisation de nouvelles protéines d’interactions étant impliquées dans la désensibilisation, l’internalisation et la dégradation du récepteur. Une première étude nous a permis d’identifier la protéine NSF (N-ethylmaleimide sensitive factor) comme interagissant avec le récepteur hétérodimérique. Nous avons caractérisé le site d’interaction au niveau du domaine coiled-coil de chacune des deux sous-unités de GABAB et constaté la dépendance de cette interaction au statut de l’activité ATPasique de NSF. Nous avons observé que cette interaction pouvait être dissociée par l’activation de GABAB, induisant la phosphorylation du récepteur par la protéine kinase C (PKC) parallèlement à la désensibilisation du récepteur. L’activation de PKC par le récepteur est dépendante de l’interaction NSF-GABAB, ce qui suggère une boucle de rétroaction entre NSF et PKC. Nous proposons donc un modèle où, à l’état basal, le récepteur interagit avec NSF, lui permettant d’activer PKC en réponse à la stimulation par un agoniste, et où cette activation permet à PKC de phosphoryler le récepteur, induisant sa dissociation de NSF et sa désensibilisation. Nous avons par la suite étudié la dégradation et l’ubiquitination constitutive de GABAB et la régulation de celles-ci par PKC et l’enzyme de déubiquitination USP14 (ubiquitin-specific protease 14). Au niveau basal, le récepteur est ubiquitiné, et présente une internalisation et une dégradation rapide. L’activation de PKC augmente l’ubiquitination à la surface cellulaire et l’internalisation, et accélère la dégradation du récepteur. USP14 est en mesure de déubiquitiner le récepteur suite à l’internalisation, mais accélère aussi la dégradation par un mécanisme indépendant de son activité enzymatique. Nos résultats suggèrent un mécanisme où l’ubiquitination promeut l’internalisation et où USP14 cible le récepteur ubiquitiné vers un processus de dégradation lysosomale. La troisième étude porte sur la régulation de la densité de récepteurs à la membrane plasmique par la protéine Grb2 (growth factor receptor-bound protein 2). Nous avons déterminé que Grb2 interagit avec GABAB1 au niveau de la séquence PEST (riche en proline, glutamate, sérine et thréonine) du domaine carboxyl-terminal, et que cette interaction module l’expression à la surface du récepteur hétérodimérique en diminuant l’internalisation constitutive par un mécanisme encore inconnu. Cette inhibition de l’internalisation pourrait provenir d’une compétition pour le site de liaison de Grb2 à GABAB1, ce site étant dans une région interagissant avec plusieurs protéines impliquées dans le trafic du récepteur, tels le complexe COPI et la sous-unité γ2S du récepteur GABAA (1, 2). En proposant de nouveaux mécanismes moléculaires contrôlant l’activité et l’expression à la membrane du récepteur GABAB par les protéines NSF, PKC, USP14 et Grb2, les études présentées dans cette thèse permettent de mieux comprendre les processus d’internalisation et de dégradation, ainsi que du contrôle de l’activité de GABAB par la désensibilisation, ouvrant la porte à une meilleure compréhension de la signalisation GABAergique.
Resumo:
BACKGROUND: Autism spectrum conditions (ASC) are associated with deficits in social interaction and communication, alongside repetitive, restricted, and stereotyped behavior. ASC is highly heritable. The gamma-aminobutyric acid (GABA)-ergic system has been associated consistently with atypicalities in autism, in both genetic association and expression studies. A key component of the GABA-ergic system is encoded by the GABRB3 gene, which has been previously implicated both in ASC and in individual differences in empathy. METHODS: In this study, 45 genotyped single nucleotide polymorphisms (SNPs) within GABRB3 were tested for association with Asperger syndrome (AS), and related quantitative traits measured through the following tests: the Empathy Quotient (EQ), the Autism Spectrum Quotient (AQ), the Systemizing Quotient-Revised (SQ-R), the Embedded Figures Test (EFT), the Reading the Mind in the Eyes Test (RMET), and the Mental Rotation Test (MRT). Two-loci, three-loci, four-loci haplotype analyses, and one seven-loci haplotype analysis were also performed in the AS case--control sample. RESULTS: Three SNPs (rs7180158, rs7165604, rs12593579) were significantly associated with AS, and two SNPs (rs9806546, rs11636966) were significantly associated with EQ. Two SNP-SNP pairs, rs12438141-rs1035751 and rs12438141-rs7179514, showed significant association with variation in the EFT scores. One SNP-SNP pair, rs7174437-rs1863455, was significantly associated with variation in the MRT scores. Additionally, a few haplotypes, including a 19 kb genomic region that formed a linkage disequilibrium (LD) block in our sample and contained several nominally significant SNPs, were found to be significantly associated with AS. CONCLUSION: The current study confirms the role of GABRB3 as an important candidate gene in both ASC and normative variation in related endophenotypes.
Resumo:
Relatively little is known about the role of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) in extinction of appetitively motivated tasks. The benzodiazepine (BZ) chlordiazepoxide (CDP) was administered during extinction and re-acquisition of lever pressing by mice following food reinforced discrete-trial fixed-ratio 5 (FR-5) training. Typical FR behaviour was established during baseline training and persisted for several extinction sessions. There were 15 extinction sessions in all, followed by six re-acquisition sessions where food reinforcement was re-introduced. In a 2x2x2 between-group design, CDP (15 mg/kg) or vehicle injections were given prior to either the last two food reinforcement sessions and the first 10 extinction sessions, or the final five extinction sessions, or the six re-acquisition sessions. Initially CDP had no effect on the rate of extinction, but after several extinction sessions it significantly facilitated it. Surprisingly, if CDP was administered only after several sessions of extinction, it immediately produced facilitation. Thus the delayed effects of CDP are not due to drug accumulation. These data suggest that some neural change must occur before CDP can affect extinction processes. In re-acquisition sessions, CDP facilitated the reinstatement of food-reinforced lever pressing. Implications for neural and behavioural accounts of operant extinction are discussed.
Resumo:
Several recent studies have shown that reducing gamma-aminobutyric acid (GABA)-mediated neurotransmission retards extinction of aversive conditioning. However, relatively little is known about the effect of GABA on extinction of appetitively motivated tasks. We examined the effect of chlordiazepoxide (CDP), a classical benzodiazepine (BZ) and two novel subtype-selective BZs when administered to male C57Bl/6 mice during extinction following training on a discrete-trial fixed-ratio 5 (FR5) food reinforced lever-press procedure. Initially CDP had no effect, but after several extinction sessions CDP significantly facilitated extinction, i.e. slowed responding, compared with vehicle-treated mice. This effect was not due to drug accumulation because mice switched from vehicle treatment to CDP late in extinction showed facilitation immediately. Likewise, this effect could not be attributed to sedation because the dose of CDP used (15 mg/kg i.p.) did not suppress locomotor activity. The two novel subtype-selective BZ partial agonists, L-838417 and TP13, selectively facilitated extinction in similar fashion to CDP. The non-GABAergic anxiolytic buspirone was also tested and found to have similar effects when administered at a non-sedating dose. These studies demonstrate that GABA-mediated processes are important during extinction of an appetitively motivated task, but only after the animals have experienced several extinction sessions.
Resumo:
The lateral hypothalamic area (LHA) participates in the integration of sensory information and somatomotor responses associated with hunger and thirst. Although the LHA is neurochemically heterogeneous, a particularly high number of cells express melanin-concentrating hormone (MCH), which has been reported to play a role in energy homeostasis. Treatment with MCH increases food intake, and MCH mRNA is overexpressed in leptin-deficient (ob/ob) mice. Mice lacking both MCH and leptin present reduced body fat, mainly due to increased resting energy expenditure and locomotor activity. Dense MCH innervation of the cerebral motor cortex (MCx) and the pedunculopontine tegmental nucleus (PPT), both related to motor function, has been reported. Therefore, we postulated that a specific group of MCH neurons project to these areas. To investigate our hypothesis, we injected retrograde tracers into the MCx and the PPT of rats, combined with immunohistochemistry. We found that 25% of the LHA neurons projecting to the PPT were immunoreactive for MCH, and that 75% of the LHA neurons projecting to the MCx also contained MCH. Few MCH neurons were found to send collaterals to both areas. We also found that 15% of the incerto-hypothalamic neurons projecting to the PPT expressed MCH immunoreactivity. Those neurons preferentially innervated the rostral PPT. In addition, we observed that the MCH neurons express glutamic acid decarboxylase mRNA, a gamma-aminobutyric acid (GABA) synthesizing enzyme. We postulate that MCH/GABA neurons are involved in the inhibitory modulation of the innervated areas, decreasing motor activity in states of negative energy balance. (C) 2007 Published by Elsevier B.V.
Resumo:
Inhibitory neurotransmission has an important role in the processing of sensory afferent signals in the nucleus of the solitary tract (NTS), particularly in spontaneously hypertensive rats (SHR). In the present study, we tested the hypothesis that gamma-aminobutyric acid (GABA) mediated neurotransmission within the NTS produces an inhibition of the baroreflex response of splanchnic sympathetic nerve discharge (sSND). In urethane-anesthetized, artificially ventilated and vagotomized male SHR and Wistar Kyoto (WKY) rats we compared baroreflex-response curves evoked after bilateral injections into the NTS of the GABA-A antagonist bicuculline (25 pmol/50 nl) or the GABA-B antagonist CGP 35348 (5 nmol/50 nl). Baseline MAP in SHR was higher than the WKY rats (SHR: 153+/-5, vs. WKY: 112+/-6 mm Hg, p<0.05). Bilateral injection of bicuculline or CGP 35348 into the NTS induced a transient (5 min) reduction in MAP (Delta = -26+/-4 and -41+/-6 mm Hg, respectively vs. saline Delta = +4+/-3 mm Hg, p<0.05) and sSND (Delta = -21+/-13 and -78+/-7%, respectively vs. saline: Delta = +6+/-4% p<0.05). Analysis of the baroreceptor curve revealed a decrease in the lower plateau (43+/-11 and 15+/-5%, respectively vs. saline: 78+/-6%, p<0.05) and an increase in the sympathetic gain of baroreflex (6.3+/-0.3, 7.2+/-0.8% respectively vs. saline: 4.2+/-0.4%, p<0.05). Bicuculline or CGP35348 into the NTS in WKY rats did not change MAP, sSND and sympathetic baroreflex gain. These data indicate that GABAergic mechanisms within the NTS act tonically reducing sympathetic baroreflex gain in SHR. Crown Copyright (C) 2010 Published by Elsevier By. All rights reserved.
Resumo:
Nicotinic acetylcholine receptors (AChRs) are pentameric proteins that form agonist-gated cation channels through the plasma membrane. AChR agonists and antagonists are potential candidates for the treatment of neurodegenerative diseases. Cembranoids are naturally occurring diterpenoids that contain a 14-carbon ring. These diterpenoids interact with AChRs in complex ways: as irreversible inhibitors at the agonist sites, as noncompetitive inhibitors, or as positive modulators, but no cembranoid was ever shown to have agonistic activity on AChRs. The cembranoid eupalmerin acetate displays positive modulation of agonist-induced currents in the muscle-type AChR and in the related gamma-aminobutyric acid (GABA) type A receptor. Moreover, cembranoids display important biological effects, many of them mediated by nicotinic receptors. Cembranoids from tobacco are neuroprotective through a nicotinic anti-apoptotic mechanism preventing excitotoxic neuronal death which in part could result from anti-inflammatory properties of cembranoids. Moreover, tobacco cembranoids also have anti-inflammatory properties which could enhance their neuroprotective properties. Cembranoids from tobacco affect nicotine-related behavior: they increase the transient initial ataxia caused by first nicotine injection into naive rats and inhibit the expression of locomotor sensitization to repeated injections of nicotine. In addition, cembranoids are known to act as anti-tumor compounds. In conclusion, cembranoids provide a promising source of lead drugs for many clinical areas, including neuroprotection, smoking-cessation, and anti-cancer therapies. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The hypothalamus is a forebrain structure critically involved in the organization of defensive responses to aversive stimuli. Gamma-aminobutyric acid (GABA)ergic dysfunction in dorsomedial and posterior hypothalamic nuclei is implicated in the origin of panic-like defensive behavior, as well as in pain modulation. The present study was conducted to test the difference between these two hypothalamic nuclei regarding defensive and antinociceptive mechanisms. Thus, the GABA A antagonist bicuculline (40 ng/0.2 µL) or saline (0.9% NaCl) was microinjected into the dorsomedial or posterior hypothalamus in independent groups. Innate fear-induced responses characterized by defensive attention, defensive immobility and elaborate escape behavior were evoked by hypothalamic blockade of GABA A receptors. Fear-induced defensive behavior organized by the posterior hypothalamus was more intense than that organized by dorsomedial hypothalamic nuclei. Escape behavior elicited by GABA A receptor blockade in both the dorsomedial and posterior hypothalamus was followed by an increase in nociceptive threshold. Interestingly, there was no difference in the intensity or in the duration of fear-induced antinociception shown by each hypothalamic division presently investigated. The present study showed that GABAergic dysfunction in nuclei of both the dorsomedial and posterior hypothalamus elicit panic attack-like defensive responses followed by fear-induced antinociception, although the innate fear-induced behavior originates differently in the posterior hypothalamus in comparison to the activity of medial hypothalamic subdivisions.
Resumo:
Gamma-aminobutyric acid (GABA) is a major inhibitory neurotransmitter in the central nervous system and alterations in central GABAergic transmission may contribute to the symptoms of a number of neurological and psychiatric disorders. Because of this relationship, numerous laboratories are attempting to develop agents which will selectively enhance GABA neurotransmission in brain. Due to these efforts, several promising compounds have recently been discovered. Should these drugs prove to be clinically effective, they will be used to treat chronic neuropsychiatric disabilities and, therefore, will be administered for long periods of time. Accordingly, the present investigation was undertaken to determine the neurochemical consequences of chronic activation of brain GABA systems in order to better define the therapeutic potential and possible side-effect liability of GABAmimetic compounds.^ Chronic (15 day) administration to rats of low doses of amino-oxyacetic acid (AOAA, 10 mg/kg, once daily), isonicotinic acid hydrazide (20 mg/kg, b.i.d.), two non-specific inhibitors of GABA-T, the enzyme which catabolizes GABA in brain, or (gamma)-acetylenic GABA (10 mg/kg, b.i.d.) a catalytic inhibitor of this enzyme, resulted in a significant elevation of brain and CSF GABA content throughout the course of treatment. In addition, chronic administration of these drugs, as well as the direct acting GABA receptor agonists THIP (8 mg/kg, b.i.d.) or kojic amine (18 mg/kg, b.i.d.) resulted in a significant increase in dopamine receptor number and a significant decrease in GABA receptor number in the corpus striatum of treated animals as determined by standard in vitro receptor binding techniques. Changes in the GABA receptor were limited to the corpus striatum and occurred more rapidly than did alterations in the dopamine receptor. The finding that dopamine-mediated stereotypic behavior was enhanced in animals treated chronically with AOAA suggested that the receptor binding changes noted in vitro have some functional consequence in vitro.^ Coadministration of atropine (a muscarinic cholinergic receptor antagonist) blocked the GABA-T inhibitor-induced increase in striatal dopamine receptors but was without effect on receptor alterations seen following chronic administration of direct acting GABA receptor agonists. Atropine administration failed to influence the drug-induced decreases in striatal GABA receptors.^ Other findings included the discovery that synaptosomal high affinity ('3)H-choline uptake, an index of cholinergic neuronal activity, was significantly increased in the corpus striatum of animals treated acutely, but not chronically, with GABAmimetics.^ It is suggested that the dopamine receptor supersensitivity observed in the corpus striatum of animals following long-term treatment with GABAmimetics is a result of the chronic inhibition of the nigrostriatal dopamine system by these drugs. Changes in the GABA receptor, on the other hand, are more likely due to a homospecific regulation of these receptors. An hypothesis based on the different sites of action of GABA-T inhibitors vis-a-vis the direct acting GABA receptor agonists is proposed to account for the differential effect of atropine on the response to these drugs.^ The results of this investigation provide new insights into the functional interrelationships that exist in the basal ganglia and suggest that chronic treatment with GABAmimetics may produce extrapyramidal side-effects in man. In addition, the constellation of neurochemical changes observed following administration of these drugs may be a useful guide for determining the GABAmimetic properties of neuropharmacological agents. ^
Resumo:
Oligomeric assembly of neurotransmitter transporters is a prerequisite for their export from the endoplasmic reticulum (ER) and their subsequent delivery to the neuronal synapse. We previously identified mutations, e.g., in the gamma-aminobutyric acid (GABA) transporter-1 (GAT1), which disrupted assembly and caused retention of the transporter in the ER. Using one representative mutant, GAT1-E101D, we showed here that ER retention was due to association of the transporter with the ER chaperone calnexin: interaction with calnexin led to accumulation of GAT1 in concentric bodies corresponding to previously described multilamellar ER-derived structures. The transmembrane domain of calnexin was necessary and sufficient to direct the protein into these concentric bodies. Both yellow fluorescent protein-tagged versions of wild-type GAT1 and of the GAT1-E101D mutant remained in disperse (i.e., non-aggregated) form in these concentric bodies, because fluorescence recovered rapidly (t(1/2) approximately 500 ms) upon photobleaching. Fluorescence energy resonance transfer microscopy was employed to visualize a tight interaction of GAT1-E101D with calnexin. Recognition by calnexin occurred largely in a glycan-independent manner and, at least in part, at the level of the transmembrane domain. Our findings are consistent with a model in which the transmembrane segment of calnexin participates in chaperoning the inter- and intramolecular arrangement of hydrophobic segment in oligomeric proteins.