849 resultados para Gallotti cage


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photo of a hatching cage in Tower Mill, an unidentified location in the North West of England, UK. The image was taken in 1950. This photo is part of a Photo Album that includes pictures from 1935 to 1954.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Technological innovation has made it possible to grow marine finfish in the coastal and open ocean. Along with this opportunity comes environmental risk. As a federal agency charged with stewardship of the nation’s marine resources, the National Oceanic and Atmospheric Administration (NOAA) requires tools to evaluate the benefits and risks that aquaculture poses in the marine environment, to implement policies and regulations which safeguard our marine and coastal ecosystems, and to inform production designs and operational procedures compatible with marine stewardship. There is an opportunity to apply the best available science and globally proven best management practices to regulate and guide a sustainable United States (U.S.) marine finfish farming aquaculture industry. There are strong economic incentives to develop this industry, and doing so in an environmentally responsible way is possible if stakeholders, the public and regulatory agencies have a clear understanding of the relative risks to the environment and the feasible solutions to minimize, manage or eliminate those risks. This report spans many of the environmental challenges that marine finfish aquaculture faces. We believe that it will serve as a useful tool to those interested in and responsible for the industry and safeguarding the health, productivity and resilience of our marine ecosystems. This report aims to provide a comprehensive review of some predominant environmental risks that marine fish cage culture aquaculture, as it is currently conducted, poses in the marine environment and designs and practices now in use to address these environmental risks in the U.S. and elsewhere. Today’s finfish aquaculture industry has learned, adapted and improved to lessen or eliminate impacts to the marine habitats in which it operates. What progress has been made? What has been learned? How have practices changed and what are the results in terms of water quality, benthic, and other environmental effects? To answer these questions we conducted a critical review of the large body of scientific work published since 2000 on the environmental impacts of marine finfish aquaculture around the world. Our report includes results, findings and recommendations from over 420 papers, primarily from peer-reviewed professional journals. This report provides a broad overview of the twenty-first century marine finfish aquaculture industry, with a targeted focus on potential impacts to water quality, sediment chemistry, benthic communities, marine life and sensitive habitats. Other environmental issues including fish health, genetic issues, and feed formulation were beyond the scope of this report and are being addressed in other initiatives and reports. Also absent is detailed information about complex computer simulations that are used to model discharge, assimilation and accumulation of nutrient waste from farms. These tools are instrumental for siting and managing farms, and a comparative analysis of these models is underway by NOAA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A three month long experiment was conducted to observe the effect of stocking density on the growth of Pangasius sutchi in net cages. The size of each cage was 1m³.The three stocking densities used were 40, 50 and 60 fishes/m³ and designated as treatment T1, T2 and T3 respectively. Each treatment had three replicates. All the fishes were of same age group having mean length and weight of 7.13 ± 1.37 cm and 2.46 ± 0.12 g respectively. The fish in all the net cages were fed a diet containing 34% protein. The result of the study showed that fish in the treatment T1 stocked at the rate of 40 fish/m³ resulted the best individual weight gain followed by T2 and T3 respectively. The specific growth rate (SGR) ranged between 3.51 and 3.09, the food conversion ratio (FCR) values ranged between 1.73 and 2.04 with treatment T1 resulting the lowest FCR. The protein efficiency ratios (PER) values were 1.69, 1.16 and 1.43 for treatment T1, T2 and T3 respectively. There was no significant (P>0.05) variation among the survival rates of fish which ranged between 92 and 95%. The net productions in different treatments were 2189, 2343, and 2283g for treatment T1, T2 and T3 respectively. The result of the present study indicated that the best individual growth of P. sutchi was obtained at a density of 40 fish/m³ but the highest total production was obtained at a stocking density of 50 fish/m³ in net cages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Source of the Nile Fish farm (SON) is located at Bugungu area in Napoleon Gulf, northern Lake Victoria. The proprietors of the farm requested for technical assistance of NaFIRRI to undertake regular environment monitoring of the cage site as is mandatory under the NEMA conditions. Thus, NAFIRRI undertakes quarterly environment surveys in the cage area covering selected physical-chemical factors i.e. water column depth, water transparency, water column temperature, dissolved oxygen, pH and conductivity; nutrient status, algal and invertebrate communities (zooplankton and macro-benthos) as well as fish community. The first environmental survey was undertaken in February 2011. Results/observations made during the second quarter (April-June 2011) field survey are presented in this technical report along with a scientific interpretation and discussion of the results with reference to possible impacts of the cage facilities on the water environment and the different aquatic biota in and around the cages including natural fish communities.