531 resultados para GRASSLANDS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hybrid stylos (Stylosanthes guianensis var. vulgaris x var. pauciflora) with durable, quantitative resistance to anthracnose, mid-season harvest maturity date (early-July), high DM and seed yields have been selected at the Embrapa Beef Cattle Research Center, Campo Grande, Brazil. The hybrids displayed improved forage traits in Brazil, the native habitat and major center of diversity of the species and its pathogen, as well as in vastly different ecosystems. Dry forage yields and anthracnose resistance of superior selections and their composites were equal, in some instances, significantly better, than those of cv. Mineir (a) over tildeo in multilocational trials situated in the Cerrados from lat. 6degrees S to lat. 20degrees S. Selected hybrids performed well in comparison with the highly successful CIAT 184 (cv.Reyan II) on Hainan Island, China. Composites have also shown good promise in seed multiplication plots in Queensland, Australia. A positive attribute of composite hybrids is their great genetic diversity in contrast to pure-line cultivars with a relatively narrow genetic base. These truly tropical forms of stylo are best adapted to regions with >1500mm average annual rainfall.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Questions: Grasslands are usually neglected as potential carbon stocks, partially due to the lack of studies on biomass and carbon dynamics in tropical grasslands. What is the importance of Brazilian tropical wet grasslands as carbon sinks? Does fire frequency and season affect biomass and carbon allocation in Brazilian wet grasslands? Location: Wet grasslands, tropical savanna, Jalapão, Tocantins, northern Brazil. Methods: We determined biomass above- and below-ground, estimated carbon stocks in biennially burned plots (B2) and plots excluded from fire for 4 yr (B4). Moreover, we determined biomass in both rainy and dry seasons. Samples were 0.25 m × 0.25 m × 0.2 m (eight samples per treatment, applying a nested design, total of 48 samples). The biomass was classified in above-ground graminoids, forbs and dead matter, and below-ground roots and other below-ground organs. We used ANOVA to compare variables between treatments and seasons. Results: More than 40% of the total biomass and carbon stocks were located below-ground, mostly in roots. A high proportion of dead biomass (B4) was found in the above-ground material, probably due to low decomposition rates and consequent accumulation over the years. Although these grasslands do not experience water stress, we found significant evidence of resource re-allocation from below-ground organs to the above-ground biomass in the rainy season. Conclusions: We found more dead biomass in the rainy season, probably due to low decomposition rates, which can increase fire risk in these grasslands during the following dry season. These tropical wet grasslands stored high amounts of carbon (621 to 716 g C.m-2), mostly in the roots. Thus, policymakers should consider tropical grasslands as potential carbon stocks, since they are one of the most threatened and unprotected ecosystems in Brazil. © 2012 International Association for Vegetation Science.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brazilian Campos grasslands are ecosystems under high frequency of disturbance by grazing and fires. Absence of such disturbances may lead to shrub encroachment and loss of plant diversity. Vegetation regeneration after disturbance in these grasslands occurs mostly by resprouting from belowground structures. We analyzed the importance of bud bank and belowground bud bearing organs in Campos grasslands. We hypothesize that the longer the intervals between disturbances are, the smaller the size of the bud bank is. Additionally, diversity and frequency of belowground organs should also decrease in areas without disturbance for many years. We sampled 20 soil cores from areas under different types of disturbance: grazed, exclusion from disturbance for two, six, 15 and 30 years. Belowground biomass was sorted for different growth forms and types of bud bearing organs. We found a decrease in bud bank size with longer disturbance intervals. Forbs showed the most drastic decrease in bud bank size in the absence of disturbance, which indicates that they are very sensitive to changes in disturbance regimes. Xylopodia (woody gemmiferous belowground organs with hypocotyl-root origin) were typical for areas under influence of recurrent fires. The diversity of belowground bud bearing structures decreased in the absence of disturbance. Longer intervals between disturbance events, resulting in decrease of bud bank size and heterogeneity of belowground organs may lead to the decline and even disappearance of species that relay on resprouting from the bud bank upon disturbance. (C) 2014 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

QuestionsWe aimed to analyse the effect of fire on flowering in subtropical grasslands, by addressing the following questions: will fire history affect flowering? If yes, do fire feedbacks influence flowering or is it just the removal of above-ground biomass? Are there differences in burned and mowed plots?LocationSubtropical grasslands in Southern Brazil (30 degrees 03S, 51 degrees 07W).MethodsWe established plots in areas with different fire histories: 30d (30 plots: five replicates), 1yr (14 replicates), 3yr (30 plots: five replicates) since the last fire, in experimentally burned and mowed plots (14 replicates each). We counted the number of flowering species, as well as the number of flowering stalks.ResultsGraminoid species flowered in highest numbers 1yr after fire, whilst forbs had more species flowering just after fire, indicating different reproductive strategies in post-fire environments. Mowing was not as efficient as fire in stimulating flowering. Finally, the different functional groups showed different flowering responses to time since last fire and to the different types of management.ConclusionsOur results show fire stimulated flowering. Although mowing can be a good alternative for maintaining plant diversity, our study showed that this practice is not as efficient as fire in stimulating flowering. However, fire season should be noted as a limiting factor to the recovery of C-3 grasses in these subtropical grasslands, and annual burns may be harmful to C-4 grasses, since they delay their flowering to the next post-fire growing season.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amphibian conservation depends on knowledge about species composition and distribution. This emphasizes the need for inventories, especially in poorly sampled areas. This is the case of Southern grasslands (Campos Sulinos) associated with Araucaria forest in the state of Paraná, southern Brazil. We sampled amphibians in 105 environments from 2004 to 2013 using transect sampling, active search and surveys at breeding sites. We found 61 anuran species and two caecilians. This is the first comprehensive list of amphibian species inhabiting grasslands in Paraná. This landscape deserves high conservation priority before these natural grasslands vanish.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant communities on weathered rock and outcrops are characterized by high values in species richness (Dengler 2006) and often persist on small and fragmented surfaces. Yet very few studies have examined the relationships between heterogeneity and plant diversity at small scales, in particular in poor-nutrient and low productive environment (Shmida and Wilson 1985, Lundholm 2003). In order to assess these relationships both in space and time in relationship, two different approaches were employed in the present study, in two gypsum outcrops of Northern Apennine. Diachronic and synchronic samplings from April 2012 to March 2013 were performed. A 50x50 cm plot was used in both samplings such as the sampling unit base. The diachronic survey aims to investigate seasonal patterning of plant diversity by the use of images analysis techniques integrated with field data and considering also seasonal climatic trend, the substrate quality and its variation in time. The purpose of the further, synchronic sampling was to describe plant diversity pattern as a function of the environmental heterogeneity meaning in substrate typologies, soil depth and topographic features. Results showed that responses of diversity pattern depend both on the resources availability, environmental heterogeneity and the manner in which the different taxonomic group access to them during the year. Species richness and Shannon diversity were positively affected by increasing in substrate heterogeneity. Furthermore a good turnover in seasonal species occurrence was detected. This vegetation may be described by the coexistence of three groups of species which created a gradient from early colonization stages, characterized by greater slope and predominance of bare rock, gradually to situation of more developed soil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diversity–stability hypothesis states that current losses of biodiversity can impair the ability of an ecosystem to dampen the effect of environmental perturbations on its functioning. Using data from a long-term and comprehensive biodiversity experiment, we quantified the temporal stability of 42 variables characterizing twelve ecological functions in managed grassland plots varying in plant species richness. We demonstrate that diversity increases stability i) across trophic levels (producer, consumer), ii) at both the system (community, ecosystem) and the component levels (population, functional group, phylogenetic clade), and iii) primarily for aboveground rather than belowground processes. Temporal synchronization across studied variables was mostly unaffected with increasing species richness. This study provides the strongest empirical support so far that diversity promotes stability across different ecological functions and levels of ecosystem organization in grasslands