53 resultados para GRANULITES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis focusses on the tectonic evolution and geochronology of part of the Kaoko orogen, which is part of a network of Pan-African orogenic belts in NW Namibia. By combining geochemical, isotopic and structural analysis, the aim was to gain more information about how and when the Kaoko Belt formed. The first chapter gives a general overview of the studied area and the second one describes the basis of the Electron Probe Microanalysis dating method. The reworking of Palaeo- to Mesoproterozoic basement during the Pan-African orogeny as part of the assembly of West Gondwana is discussed in Chapter 3. In the study area, high-grade rocks occupy a large area, and the belt is marked by several large-scale structural discontinuities. The two major discontinuities, the Sesfontein Thrust (ST) and the Puros Shear Zone (PSZ), subdivide the orogen into three tectonic units: the Eastern Kaoko Zone (EKZ), the Central Kaoko Zone (CKZ) and the Western Kaoko Zone (WKZ). An important lineament, the Village Mylonite Zone (VMZ), has been identified in the WKZ. Since plutonic rocks play an important role in understanding the evolution of a mountain belt, zircons from granitoid gneisses were dated by conventional U-Pb, SHRIMP and Pb-Pb techniques to identify different age provinces. Four different age provinces were recognized within the Central and Western part of the belt, which occur in different structural positions. The VMZ seems to mark the limit between Pan-African granitic rocks east of the lineament and Palaeo- to Mesoproterozoic basement to the west. In Chapter 4 the tectonic processes are discussed that led to the Neoproterozoic architecture of the orogen. The data suggest that the Kaoko Belt experienced three main phases of deformation, D1-D3, during the Pan-African orogeny. Early structures in the central part of the study area indicate that the initial stage of collision was governed by underthrusting of the medium-grade Central Kaoko zone below the high-grade Western Kaoko zone, resulting in the development of an inverted metamorphic gradient. The early structures were overprinted by a second phase D2, which was associated with the development of the PSZ and extensive partial melting and intrusion of ~550 Ma granitic bodies in the high-grade WKZ. Transcurrent deformation continued during cooling of the entire belt, giving rise to the localized low-temperature VMZ that separates a segment of elevated Mesoproterozoic basement from the rest of the Western zone in which only Pan-African ages have so far been observed. The data suggest that the boundary between the Western and Central Kaoko zones represents a modified thrust zone, controlling the tectonic evolution of the Kaoko belt. The geodynamic evolution and the processes that generated this belt system are discussed in Chapter 5. Nd mean crustal residence ages of granitoid rocks permit subdivision of the belt into four provinces. Province I is characterised by mean crustal residence ages <1.7 Ga and is restricted to the Neoproterozoic granitoids. A wide range of initial Sr isotopic values (87Sr/86Sri = 0.7075 to 0.7225) suggests heterogeneous sources for these granitoids. The second province consists of Mesoproterozoic (1516-1448 Ma) and late Palaeo-proterozoic (1776-1701 Ma) rocks and is probably related to the Eburnian cycle with Nd model ages of 1.8-2.2 Ga. The eNd i values of these granitoids are around zero and suggest a predominantly juvenile source. Late Archaean and middle Palaeoproterozoic rocks with model ages of 2.5 to 2.8 Ga make up Province III in the central part of the belt and are distinct from two early Proterozoic samples taken near the PSZ which show even older TDM ages of ~3.3 Ga (Province IV). There is no clear geological evidence for the involvement of oceanic lithosphere in the formation of the Kaoko-Dom Feliciano orogen. Chapter 6 presents the results of isotopic analyses of garnet porphyroblasts from high-grade meta-igneous and metasedimentary rocks of the sillimanite-K-feldspar zone. Minimum P-T conditions for peak metamorphism were calculated at 731±10 °C at 6.7±1.2 kbar, substantially lower than those previously reported. A Sm-Nd garnet-whole rock errorchron obtained on a single meta-igneous rock yielded an unexpectedly old age of 692±13 Ma, which is interpreted as an inherited metamorphic age reflecting an early Pan-African granulite-facies event. The dated garnets survived a younger high-grade metamorphism that occurred between ca. 570 and 520 Ma and apparently maintained their old Sm-Nd isotopic systematics, implying that the closure temperature for garnet in this sample was higher than 730 °C. The metamorphic peak of the younger event was dated by electronmicroprobe on monazite at 567±5 Ma. From a regional viewpoint, it is possible that these granulites of igneous origin may be unrelated to the early Pan-African metamorphic evolution of the Kaoko Belt and may represent a previously unrecognised exotic terrane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We document the first-known Mesoproterozoic ophiolite from the southwestern part of the Amazon craton, corresponding to the Trincheira Complex of Calymmian age, and propose a tectonic model that explains many previously enigmatic features of the Precambrian history of this key craton, and discuss its role in the reconstruction of the Columbia supercontinent. The complex comprises extrusive rocks (fine-grained amphibolites derived from massive and pillowed basalts), mafic-ultramafic intrusive rocks, chert, banded iron formation (BIFs), pelites, psammitic and a smaller proportion of calc-silicate rocks. This sequence was deformed, metasomatized and metamorphosed during the development of the Alto Guaporé Belt, a Mesoproterozoic accretionary orogen. The rocks were deformed by a single tectonic event, which included isoclinal folding and metamorphism of the granulite-amphibolite facies. Layered magmatic structures were preserved in areas of low strain, including amygdaloidal and cumulate structures. Metamorphism was pervasive and reached temperatures of 780-853°C in mafic granulites and 680-720°C in amphibolites under an overall pressure of 6.8 kbar. The geochemical composition of the extrusive and intrusive rocks indicates that all noncumulus mafic-ultramafic rocks are tholeiitic basalts. The mafic-ultramafic rocks display moderately to strongly fractionation of light rare earth elements (LREE), near-flat heavy rare earth elements (HREE) patterns and moderate to strong negative high field strength elements (HFSE) anomalies (especially Nb), a geochemical signature typical of subduction zones. The lowest units of mafic granulites and porphyroblastic amphibolites in the Trincheira ophiolite are similar to the modern mid-ocean ridge basalt (MORB), although they locally display small Ta, Ti and Nb negative anomalies, indicating a small subduction influence. This behavior changes to an island arc tholeiites (IAT) signature in the upper units of fine-grained amphibolites and amphibole rich-amphibolites, characterized by progressive depletion in the incompatible elements and more pronounced negative Ta and Nb anomalies, as well as common Ti and Zr negative anomalies. Tectono-magmatic variation diagrams and chondrite-normalized REE and primitive mantle normalized patterns suggest a back-arc to intra-oceanic island arc tectonic regime for the eruption of these rocks. Therefore, the Trincheira ophiolite appears to have originated in an intraoceanic supra-subduction setting composed of an arc-back-arc system. Accordingly, the Trincheira Complex is a record of oceanic crust relics obducted during the collision of the Amazon craton and the Paraguá block during the Middle Mesoproterozoic. Thus, the recognition of the Trincheira ophiolite and suture significantly changes views on the evolution of the southern margin of the Amazon craton, and how it can influence the global tectonics and the reconstruction of the continents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An example of cordierite-bearing gneiss that is part of a high-grade gneiss-migmatite sequence is described from the Hatch Plain in the Read Mountains of the Shackleton Range, Antarctica, for the first time. The cordierite-bearing rocks constitute the more melanosomic portions of the metatectic and migmatitic rocks that are associated with relict granulite facies rocks such as enderbitic granulite and enderbitic garnet granulite. The predominant mineral assemblage in the cordierite-bearing rocks is chemically homogeneous cordierite (XMg 0.61) and biotite (XMg 0.47), strongly zoned garnet (XMg 0.18-0.11), sillimanite, K-feldspar (Or81-94Ab5-18An0.6), plagioclase (An28), and quartz. Inclusions of sillimanite and biotite relics in both garnet and cordierite indicate that garnet and cordierite were produced by the coupled, discontinuous reaction biotite + sillimanite + quartz = cordierite + garnet + K-feldspar + H2O. Various garnet-biotite and garnet-cordierite geothermometers and sillimanite-quartz-plagioclase-garnet-cordierite geobarometers yield a continuous clockwise path in the P-T diagram. The P-T conditions for equilibrium between garnet core and cordierite and between garnet core and biotite during peak metamorphism and migmatization were estimated to be 690 °C at 5-6 kb. This was followed by cooling and unloading with continuously changing conditions down to 515 °C at 2-3 kb. This low-pressure re-equilibration correlates with the pressure conditions evaluated by SCHULZE (1989) for the widespread granitic gneisses of the Read Group in the Shackleton Range. The associated relict enderbitic granulites representing low-pressure type granulite (8 kb; 790 °C) are comparable to similar low-pressure granulites from the East Antarctic craton. They were either formed by under-accretion processes after collision (WELLS 1979, p. 217) or they are a product of remetamorphism at P-T conditions intermediate between granulite and amphibolite facies. A model of a multiple imbrication zone with crustal thickening (CUTHBERT et al. 1983) is discussed for the formation of the relict granulites of the central and eastern Read Mountains which show higher pressure conditions (8-12 kb, SCHULZE & OLESCH 1990), indicating a Proterozoic crustal thickness of at least 40 km.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper presents data on the Nd-Sr systematics of magmatic rocks of the Khaidaiskii Series of the Anginskaya Formation in the Ol'khon region, western Baikal area, and rocks of the Talanchanskaya Formation on the eastern shore of Lake Baikal. Geochemical characteristics of these rocks are identical and testify to their arc provenance. At the same time, the epsilon(t)Nd of rocks of the Khaidaiskii Series in the Ol'khon area has positive values, and the data points of these rocks plot near the mantle succession line in the epsilon(t)Nd-87Sr/86Sr diagram, whereas the epsilon(t)Nd values of rocks of the Talanchanskaya Formation are negative, and the data points of these rocks fall into the fourth quadrant in the epsilon(t)Nd -87Sr/86Sr diagram. This testifies to a mantle genesis of the parental magmas of the Khaidaiskii Series and to the significant involvement of older crustal material in the generation of the melts that produced the orthorocks on the eastern shore of the lake. These conclusions are corroborated by model ages of magmatic rocks in the Ol'khon area (close to 1 Ga) and of rocks of the Talanchanskaya Formation (approximately 2 Ga). The comparison of our data with those obtained by other researchers on the Nd-Sr isotopic age of granulites of the Ol'khon Group and metavolcanics in various structural zones in the northern Baikal area suggests, with regard for the geochemistry of these rocks, the accretion of tectonic nappes that had different isotopic histories: some of them were derived from the mantle wedge and localized in the island arc itself (magmatic rocks of the Anginskaya Formation) or backarc spreading zone (mafic metamagmatic rocks of the Ol'khon Group), while others were partial melts derived, with the participation of crustal material, from sources of various age (metagraywackes in the backarc basin in the Ol'khon Group and the ensialic basement of the island arc in the Talanchanskaya Formation).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study was to characterize the structural-geophysical expression of the Transbrasiliano Lineament (TBL) in the east-central portion of the Parnaíba Basin. The TBL corresponds to a major Neoproterozoic NE-trending shear zone related to the Brasiliano orogenic cycle, with dextral strike-slip kinematics, underlying (but also laterally exposed in the NE and SW basin edges) the sedimentary section of the Parnaíba Basin. In this study, the interpretation of gravity and magnetic anomaly maps is consistent with the TBL kinematics, the signature of the geophysical anomalies corresponding to the high (plastic behaviour) and subsequent declining temperature (ductile to brittle behaviour) stages during Brasiliano and late Brasiliano times. The pattern of residual gravity anomalies is compatible with an S-C dextral pair shaping the geological bodies of an heterogeneous basement, such as slices of gneisses and granulites (positive anomalies), granitic and low-medium grade metasedimentary rocks (negative anomalies). Such anomalies curvilinear trends, ranging from NNE (interpreted as S surfaces) to NE (C surfaces), correspond to flattening surfaces (S), while the NE rectilinear trend must represent a C band. The narrower magnetic anomalies also display NNE to NE (S surfaces) trends and should correspond to similar (although narrower and more discontinuous) sources in the equivalent anomaly patterns. Pre-Silurian pull-apart style grabens may contribute to the NE negative gravimetric anomalies, although this interpretation demands control by seismic data analysis. On the other hand, the curvilinear anomalies associated to contractional trends are incompatible with their interpretation as pre-Silurian graben, in both maps. In the (reduced to the pole) magnetic anomalies map, most of these are again associated to low-temperature shear zones (C planes) and faults, juxtaposing distinct blocks in terms of magnetic properties, or eventually filled with basic bodies. It is also possible that some isolated magnetic anomalies correspond to igneous bodies of late-Brasiliano or Mesozoic age. The basement late discontinuities pattern can be interpreted in analogy to the Riedel fractures model, with steep dipping surfaces and a sub-horizontal movement section. This study also explored 2D gravity modeling controlled by the interpretation of a dip seismic line as regards to the Transbrasiliano Lineament. The rock section equivalent to the Jaibaras Group occupying a graben structure (as identified in the seismic line) corresponds to a discrete negative anomaly superimposed to a gravimetric high, once again indicating a stronger influence of older crystalline basement rocks as gravimetric sources, mainly reflecting the heterogeneities and anisotropies generated at high temperature conditions and their subsequent cooling along the TBL, during the Brasiliano cycle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study was to characterize the structural-geophysical expression of the Transbrasiliano Lineament (TBL) in the east-central portion of the Parnaíba Basin. The TBL corresponds to a major Neoproterozoic NE-trending shear zone related to the Brasiliano orogenic cycle, with dextral strike-slip kinematics, underlying (but also laterally exposed in the NE and SW basin edges) the sedimentary section of the Parnaíba Basin. In this study, the interpretation of gravity and magnetic anomaly maps is consistent with the TBL kinematics, the signature of the geophysical anomalies corresponding to the high (plastic behaviour) and subsequent declining temperature (ductile to brittle behaviour) stages during Brasiliano and late Brasiliano times. The pattern of residual gravity anomalies is compatible with an S-C dextral pair shaping the geological bodies of an heterogeneous basement, such as slices of gneisses and granulites (positive anomalies), granitic and low-medium grade metasedimentary rocks (negative anomalies). Such anomalies curvilinear trends, ranging from NNE (interpreted as S surfaces) to NE (C surfaces), correspond to flattening surfaces (S), while the NE rectilinear trend must represent a C band. The narrower magnetic anomalies also display NNE to NE (S surfaces) trends and should correspond to similar (although narrower and more discontinuous) sources in the equivalent anomaly patterns. Pre-Silurian pull-apart style grabens may contribute to the NE negative gravimetric anomalies, although this interpretation demands control by seismic data analysis. On the other hand, the curvilinear anomalies associated to contractional trends are incompatible with their interpretation as pre-Silurian graben, in both maps. In the (reduced to the pole) magnetic anomalies map, most of these are again associated to low-temperature shear zones (C planes) and faults, juxtaposing distinct blocks in terms of magnetic properties, or eventually filled with basic bodies. It is also possible that some isolated magnetic anomalies correspond to igneous bodies of late-Brasiliano or Mesozoic age. The basement late discontinuities pattern can be interpreted in analogy to the Riedel fractures model, with steep dipping surfaces and a sub-horizontal movement section. This study also explored 2D gravity modeling controlled by the interpretation of a dip seismic line as regards to the Transbrasiliano Lineament. The rock section equivalent to the Jaibaras Group occupying a graben structure (as identified in the seismic line) corresponds to a discrete negative anomaly superimposed to a gravimetric high, once again indicating a stronger influence of older crystalline basement rocks as gravimetric sources, mainly reflecting the heterogeneities and anisotropies generated at high temperature conditions and their subsequent cooling along the TBL, during the Brasiliano cycle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structural-petrologic and isotopic-geochronologic data on magmatic, metamorphic, and metasomatic rocks from the Chernorud zone were used to reproduce the multistage history of their exhumation to upper crustal levels. The process is subdivided into four discrete stages, which corresponded to metamorphism to the granulite facies (500-490 Ma), metamorphism to the amphibolite facies (470-460 Ma), metamorphism to at least the epidote-amphibolite facies (440-430 Ma), and postmetamorphic events (410-400 Ma). The earliest two stages likely corresponded to the tectonic stacking of the backarc basin in response to the collision of the Siberian continent with the Eravninskaya island arc or the Barguzin microcontinent, a process that ended with the extensive generation of synmetamorphic granites. During the third and fourth stages, the granulites of the Chernorud nappe were successively exposed during intense tectonic motions along large deformation zones (Primorskii fault, collision lineament, and Orso Complex). The comparison of the histories of active thermal events for Early Caledonian folded structures in the Central Asian Foldbelt indicates that active thermal events of equal duration are reconstructed for the following five widely spiced accretion-collision structures: the Chernorud granulite zone in the Ol'khon territory, the Slyudyanka crystalline complex in the southwestern Baikal area, the western Sangilen territory in southeastern Tuva, Derbinskii terrane in the Eastern Sayan, and the Bayankhongor ophiolite zone in central Mongolia. The dates obtained by various isotopic techniques are generally consistent with the four discrete stages identified in the Chernorud nappe, whereas the dates corresponding to the island-arc evolutionary stage were obtained only for the western Sangilen and Bayankhongor ophiolite zone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bragança and Morais Massifs are part of the mega-klippen ensemble of NW Iberia, comprising a tectonic pile of four allochthonous units stacked above the Central-Iberian Zone autochthon. On top of this pile, the Upper Allochthonous Terrane (UAT) includes different high-grade metamorphic series whose age and geodynamic meaning are controversial. Mafic granulites provided U–Pb zircon ages at 399±7 Ma, dating the Variscan emplacement of UAT. In contrast,U–Pb zircon ages of ky- and hb-eclogites, felsic/intermediate HP/HT-granulites and orthogneisses (ca. 500–480 Ma) are identical to those of gabbros (488 ± 10 Ma) and Grt-pyroxenites (495 ± 8 Ma) belonging to a mafic/ultramafic igneous suite that records upper mantle melting and mafic magma crustal underplating at these times. Gabbros intrude the high-grade units of UAT and did not underwent the HP metamorphic event experienced by eclogites and granulites. These features and the zircon dates resemblance among different lithologies, suggest that extensive age resetting of older events may have been correlative with the igneous suite emplacement/crystallisation. Accordingly, reconciliation of structural, petrological and geochronological evidence implies that the development and early deformation of UAT high-grade rocks should be ascribed to an orogenic cycle prior to ≈500 Ma. Undisputable dating of this cycle is impossible, but the sporadic vestiges of Cadomian ages cannot be disregarded. The ca. 500–480 Ma time-window harmonises well with the Lower Palaeozoic continental rifting that trace the VariscanWilson Cycle onset and the Rheic Ocean opening. Subsequent preservation of the high heat-flowregime, possibly related to the Palaeotethys back-arc basin development (ca. 450–420 Ma), would explain the 461 ± 10 Ma age yielded by some zircon domains in felsic granulites, conceivably reflecting zircon dissolution/ recrystallisation till Ordovician times, long before the Variscan paroxysm (ca. 400–390 Ma). This geodynamic scenario suggests also that UAT should have been part of Armorica before its emplacement on top of Iberia after Palaeotethys closure.