992 resultados para GRANULITE-FACIES ROCKS


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study focuses on metasedimentary rocks from the Passos Nappe in São Sebastião do Paraíso, southern Minas Gerais, Brazil. These rocks belong to the Internal Domain (Araxa Group) of the Southern Brasilia Belt, a Neproterozoic orogenic belt associated to the formation of the Gondwana Supercontinent. Rocks from the studied area are characterized by an inverted metamorphic gradient. Previously calculated metamorphic conditions show an increasing from geenschist facies at the base (450°C, 6 kbar), to upper amphibolite facies (750°C, 11 Kbar) at the top of the sequence. However, most of these estimates are based on Fe-Mg exchange thermometers and peak temperatures may be underestimated due to Fe-Mg exchange from cooling after peak metamorphism. In this study, we present new PT results for these rocks, based on metamorphic mineral assemblage LA-ICP-MS analyses. In the studied area, rocks from the top of the sequence have a typical granulite facies mineral assemblage: Grt+Ky+Kfs+/-Pl+liq. These rocks lack muscovite and have only minor amounts of Ti-rich, dark brown biotite. In a simplified NaKFMASH system the stability field for this mineral assemblage is bounded by the reactions Sil = Ky on the low pressure side, Ms+Ab = Ky+Kfs+liq on the low temperature side and for high-Mg bulk compositions Bt + Grt = Opx + Ky + liq on the high-temperature side. Minimum temperatures (considering post-peak reequilibration) of ca. 750°C are obtained by Fe/(Fe+Mg) values of 0.7 in garnets from a Grt+Ky+Kfs bearing sample. LA-ICP-MS results obtained for three samples show that rutiles included in garnets have up to 1847 ppm of Zr, which would translate into temperatures up to 830°C for a pressure between 12 to 15 kbar. Also for retroeclogite sample, the results indicate the contents of Zr in the garnet 537 ppm at a temperature of 708 ° C. It is noteworthy that several occurrences of retroeclogites occur in the upper part of the sequence and pressures...

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Based on field work, prospection and petrographic studies ultramafic complexes and their mineral deposits from eastern Minas Gerais in southeastern Brazil are generally outlined to form a basis for future investigations in this region. The bodies dealt with occur at Ipanema, Córrego Novo, Bela Vista de Minas, Rio Pomba and Liberdade. These ultramafic bodies are generally enclosed in high-grade gneisses and consist of serpentinized peridotites and harzburgites which were metamorphosed together with their country rocks in upper amphibolite to granulite facies. Weathering of these rocks gives rise to nickeliferous laterite, while metamorphism has resulted in anthophyllite asbestos and talc deposits. © 1985 Springer-Verlag.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The towns of Castro Alves and Rafael Jambeiro, central-east of Bahia state, are located in the east of São Francisco Craton, in granulite terrains of Salvador-Curaçá Belt, formed in Paleoproterozoic. The region of study contains ortognaisses of Caraíba Complex, metamafic and metaultramafic rocks of São José do Jacuípe Suite, metasedimentary rocks of Tanque Novo-Ipirá Complex, granitoids, pegmatites and alkaline rocks. The study carried out regional and detailed geological mapping in addition to petrographical and geochemical characterization of six areas in the search for targets of feldspar and white diopside, minerals used in ceramic industry. The areas consist of granitic ortognaisses interspersed with lenses of mafic granulite rocks, calc-silicate rock, banded iron formations, paragnaisses, quartzites, and bodies of quartz-feldspar or feldspar pegmatites and alkaline rocks that fill discontinuities. The region of study contains four deformations phases, with a predominance of ductile structures. The foliation Sn has N30E to N70W direction, high angle of dip and is characterized by compositional banding of granoblastic and felsic bands interspersed with nematoblastic or lepidoblastic mafic bands. A mineral or stretching lineation Ln is associated with Sn and has trend of S55E to S72E. The rocks have been suffered a regional metamorphism with granulite facies peak and partial retrogression to greenschist facies. Geochemical studies indicate that the green coloring calc-silicate rocks have lower SiO2, MgO and higher Fe2O3 content compared with white calcssilicate rocks. The alkaline rocks of the studied area have higher Na2O, SiO2 and lower K2O, Fe2O3 content compared with others Paleoproterozoic alkaline rocks of Bahia state. The targets of diopside are associated with white calc-silicate rocks, while the targets of feldspar are associated with paragnaisses, pegmatites and alkaline rocks

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The basement rock of the Pampean flat-slab (Sierras Pampeanas) in the Central Andes was uplifted and rotated in the Cenozoic era. The Western Sierras Pampeanas are characterised by meta-igneous rocks of Grenvillian Mesoproterozoic age and metasedimentary units metamorphosed in the Ordovician period. These rocks, known as the northern Cuyania composite terrane, were derived from Laurentia and accreted toward Western Gondwana during the Early Paleozoic. The Sierra de Umango is the westernmost range of the Western Sierras Pampeanas.This range is bounded by the Devonian sedimentary rocks of the Precordillera on the western side and Tertiary rocks from the Sierra de Maz and Sierra del Espinal on the eastern side and contains igneous and sedimentary rocks outcroppings from the Famatina System on the far eastern side. The Sierra de Umango evolved during a period of polyphase tectonic activity, including an Ordovician collisional event, a Devonian compressional deformation, Late Paleozoic and Mesozoic extensional faulting and sedimentation (Paganzo and Ischigualasto basins) and compressional deformation of the Andean foreland during the Cenozoic. A Nappe System and an important shear zone, La Puntilla-La Falda Shear Zone (PFSZ), characterise the Ordovician collisional event, which was related to the accretion of Cuyania Terrane to the proto-Andean margin of Gondwana. Three continuous deformational phases are recognised for this event: the D1 phase is distinguished by relics of 51 preserved as internal foliation within interkinematic staurolite por-phyroblasts and likely represents the progressive metamorphic stage; the D2 phase exhibits P-T conditions close to the metamorphic peak that were recorded in an 52 transposition or a mylonitic foliation and determine the main structure of Umango; and the D3 phase is described as a set of tight to recumbent folds with S3 axial plane foliation, often related to thrust faults, indicating the retrogressive metamorphic stage. The Nappe System shows a top-to-the S/SW sense direction of movement, and the PFSZ served as a right lateral ramp in the exhumation process. This structural pattern is indicative of an oblique collision, with the Cuyania Terrane subducting under the proto-Andean margin of Gondwana in the NE direction. This continental subduction and exhumation lasted at least 30 million years, nearly the entire Ordovician period, and produced metamorphic conditions of upper amphibolite-to-granulite facies in medium- to high-pressure regimes. At least two later events deformed the earlier structures: D4 and D5 deformational phases. The D4 deformational phase corresponds to upright folding, with wavelengths of approximately 10 km and a general N-S orientation. These folds modified the S2 surface in an approximately cylindrical manner and are associated with exposed, discrete shear zones in the Silurian Guandacolinos Granite. The cylindrical pattern and subhorizontal axis of the D4 folds indicates that the S2 surface was originally flat-lying. The D4 folds are responsible for preserving the basement unit Juchi Orthogneiss synformal klippen. This deformation corresponds to the Chanica Tectonic during the interval between the Devonian and Carboniferous periods. The D5 deformational phase comprehends cuspate-lobate shaped open plunging folds with E W high-angle axes (D5 folds) and sub-vertical spaced cleavage. The D5 folds and related spaced cleavage deformed the previous structures and could be associated with uplifting during the Andean Cycle. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis focusses on the tectonic evolution and geochronology of part of the Kaoko orogen, which is part of a network of Pan-African orogenic belts in NW Namibia. By combining geochemical, isotopic and structural analysis, the aim was to gain more information about how and when the Kaoko Belt formed. The first chapter gives a general overview of the studied area and the second one describes the basis of the Electron Probe Microanalysis dating method. The reworking of Palaeo- to Mesoproterozoic basement during the Pan-African orogeny as part of the assembly of West Gondwana is discussed in Chapter 3. In the study area, high-grade rocks occupy a large area, and the belt is marked by several large-scale structural discontinuities. The two major discontinuities, the Sesfontein Thrust (ST) and the Puros Shear Zone (PSZ), subdivide the orogen into three tectonic units: the Eastern Kaoko Zone (EKZ), the Central Kaoko Zone (CKZ) and the Western Kaoko Zone (WKZ). An important lineament, the Village Mylonite Zone (VMZ), has been identified in the WKZ. Since plutonic rocks play an important role in understanding the evolution of a mountain belt, zircons from granitoid gneisses were dated by conventional U-Pb, SHRIMP and Pb-Pb techniques to identify different age provinces. Four different age provinces were recognized within the Central and Western part of the belt, which occur in different structural positions. The VMZ seems to mark the limit between Pan-African granitic rocks east of the lineament and Palaeo- to Mesoproterozoic basement to the west. In Chapter 4 the tectonic processes are discussed that led to the Neoproterozoic architecture of the orogen. The data suggest that the Kaoko Belt experienced three main phases of deformation, D1-D3, during the Pan-African orogeny. Early structures in the central part of the study area indicate that the initial stage of collision was governed by underthrusting of the medium-grade Central Kaoko zone below the high-grade Western Kaoko zone, resulting in the development of an inverted metamorphic gradient. The early structures were overprinted by a second phase D2, which was associated with the development of the PSZ and extensive partial melting and intrusion of ~550 Ma granitic bodies in the high-grade WKZ. Transcurrent deformation continued during cooling of the entire belt, giving rise to the localized low-temperature VMZ that separates a segment of elevated Mesoproterozoic basement from the rest of the Western zone in which only Pan-African ages have so far been observed. The data suggest that the boundary between the Western and Central Kaoko zones represents a modified thrust zone, controlling the tectonic evolution of the Kaoko belt. The geodynamic evolution and the processes that generated this belt system are discussed in Chapter 5. Nd mean crustal residence ages of granitoid rocks permit subdivision of the belt into four provinces. Province I is characterised by mean crustal residence ages <1.7 Ga and is restricted to the Neoproterozoic granitoids. A wide range of initial Sr isotopic values (87Sr/86Sri = 0.7075 to 0.7225) suggests heterogeneous sources for these granitoids. The second province consists of Mesoproterozoic (1516-1448 Ma) and late Palaeo-proterozoic (1776-1701 Ma) rocks and is probably related to the Eburnian cycle with Nd model ages of 1.8-2.2 Ga. The eNd i values of these granitoids are around zero and suggest a predominantly juvenile source. Late Archaean and middle Palaeoproterozoic rocks with model ages of 2.5 to 2.8 Ga make up Province III in the central part of the belt and are distinct from two early Proterozoic samples taken near the PSZ which show even older TDM ages of ~3.3 Ga (Province IV). There is no clear geological evidence for the involvement of oceanic lithosphere in the formation of the Kaoko-Dom Feliciano orogen. Chapter 6 presents the results of isotopic analyses of garnet porphyroblasts from high-grade meta-igneous and metasedimentary rocks of the sillimanite-K-feldspar zone. Minimum P-T conditions for peak metamorphism were calculated at 731±10 °C at 6.7±1.2 kbar, substantially lower than those previously reported. A Sm-Nd garnet-whole rock errorchron obtained on a single meta-igneous rock yielded an unexpectedly old age of 692±13 Ma, which is interpreted as an inherited metamorphic age reflecting an early Pan-African granulite-facies event. The dated garnets survived a younger high-grade metamorphism that occurred between ca. 570 and 520 Ma and apparently maintained their old Sm-Nd isotopic systematics, implying that the closure temperature for garnet in this sample was higher than 730 °C. The metamorphic peak of the younger event was dated by electronmicroprobe on monazite at 567±5 Ma. From a regional viewpoint, it is possible that these granulites of igneous origin may be unrelated to the early Pan-African metamorphic evolution of the Kaoko Belt and may represent a previously unrecognised exotic terrane.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tonalite-trondhjemite-granodiorite (TTG) gneisses form up to two-thirds of the preserved Archean continental crust and there is considerable debate regarding the primary magmatic processes of the generation of these rocks. The popular theories indicate that these rocks were formed by partial melting of basaltic oceanic crust which was previously metamorphosed to garnet-amphibolite and/or eclogite facies conditions either at the base of thick oceanic crust or by subduction processes.rnThis study investigates a new aspect regarding the source rock for Archean continental crust which is inferred to have had a bulk compostion richer in magnesium (picrite) than present-day basaltic oceanic crust. This difference is supposed to originate from a higher geothermal gradient in the early Archean which may have induced higher degrees of partial melting in the mantle, which resulted in a thicker and more magnesian oceanic crust. rnThe methods used to investigate the role of a more MgO-rich source rock in the formation of TTG-like melts in the context of this new approach are mineral equilibria calculations with the software THERMOCALC and high-pressure experiments conducted from 10–20 kbar and 900–1100 °C, both combined in a forward modelling approach. Initially, P–T pseudosections for natural rock compositions with increasing MgO contents were calculated in the system NCFMASHTO (Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O–TiO2) to ascertain the metamorphic products from rocks with increasing MgO contents from a MORB up to a komatiite. A small number of previous experiments on komatiites showed the development of pyroxenite instead of eclogite and garnet-amphibolite during metamorphism and established that melts of these pyroxenites are of basaltic composition, thus again building oceanic crust instead of continental crust.rnThe P–T pseudosections calculated represent a continuous development of their metamorphic products from amphibolites and eclogites towards pyroxenites. On the basis of these calculations and the changes within the range of compositions, three picritic Models of Archean Oceanic Crust (MAOC) were established with different MgO contents (11, 13 and 15 wt%) ranging between basalt and komatiite. The thermodynamic modelling for MAOC 11, 13 and 15 at supersolidus conditions is imprecise since no appropriate melt model for metabasic rocks is currently available and the melt model for metapelitic rocks resulted in unsatisfactory calculations. The partially molten region is therfore covered by high-pressure experiments. The results of the experiments show a transition from predominantly tonalitic melts in MAOC 11 to basaltic melts in MAOC 15 and a solidus moving towards higher temperatures with increasing magnesium in the bulk composition. Tonalitic melts were generated in MAOC 11 and 13 at pressures up to 12.5 kbar in the presence of garnet, clinopyroxene, plagioclase plus/minus quartz (plus/minus orthopyroxene in the presence of quartz and at lower pressures) in the absence of amphibole but it could not be explicitly indicated whether the tonalitic melts coexisting with an eclogitic residue and rutile at 20 kbar do belong to the Archean TTG suite. Basaltic melts were generated predominantly in the presence of granulite facies residues such as amphibole plus/minus garnet, plagioclase, orthopyroxene that lack quartz in all MAOC compositions at pressures up to 15 kbar. rnThe tonalitic melts generated in MAOC 11 and 13 indicate that thicker oceanic crust with more magnesium than that of a modern basalt is also a viable source for the generation of TTG-like melts and therefore continental crust in the Archean. The experimental results are related to different geologic settings as a function of pressure. The favoured setting for the generation of early TTG-like melts at 15 kbar is the base of an oceanic crust thicker than existing today or by melting of slabs in shallow subduction zones, both without interaction of tonalic melts with the mantle. Tonalitic melts at 20 kbar may have been generated below the plagioclase stability by slab melting in deeper subduction zones that have developed with time during the progressive cooling of the Earth, but it is unlikely that those melts reached lower pressure levels without further mantle interaction.rn

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Parry Sound domain is a granulite nappe-stack transported cratonward during reactivation of the ductile lower and middle crust in the late convergence of the Mesoproterozoic Grenville orogeny. Field observations suggest the following with respect to the ductile sheath: (1) Formation of a carapace of transposed amphibolite facies gneiss derived from and enveloping the western extremity of the Parry Sound domain and separating it from high-strain gneiss of adjacent allochthons. This ductile sheath formed dynamically around the moving granulite nappe through the development of systems of progressively linked shear zones. (2) Transposition initiated by hydration (amphibolization) of granulite facies gneiss by introduction of fluid along cracks accompanying pegmatite emplacement. Shear zones nucleated along pegmatite margins and subsequently linked and rotated. The source of the pegmatites was most likely subjacent migmatitic and pegmatite-rich units or units over which Parry Sound domain was transported. Comparison of gneisses of the ductile sheath with high-strain layered gneiss of adjacent allochthons show the mode of transposition of penetratively layered gneiss depended on whether or not the gneiss protoliths were amphibolite or granulite facies tectonites before initiation of transposition, resulting in, e.g., folding before shearing, no folding before shearing, respectively. Meter-scale truncation along high-strain gradients at the margins of both types of transposition-related shear zones observed within and marginal to Parry Sound domain mimic features at kilometer scales, implying that apparent truncation by transposition originating in a manner similar to the ductile sheath may be a common feature of deep crustal ductile reworking. Citation: Culshaw, N., C. Gerbi, and J. Marsh (2010), Softening the lower crust: Modes of syn-transport transposition around and adjacent to a deep crustal granulite nappe, Parry Sound domain, Grenville Province, Ontario, Canada, Tectonics, 29, TC5013, doi:10.1029/2009TC002537.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In 1884, Lorenzen proposed the formula MgAI2SiO6 for his new mineral kornerupine from Fiskenæsset and did not suspect it to contain boron. Lacroix and de Gramont (1919) reported boron in Fiskenæsset kornerupine, while Herd (1973) found none. New analyses (ion microprobe mass analyser and spectrophotometric) of kornerupine in three specimens from the type locality, including the specimens analysed by Lorenzen and Herd, indicate the presence of boron in all three, in amounts ranging from 0.50 to 1.44 wt.% B203, e.g. (Li0.04 Na0.01 Ca0.01) (Mg3.49 Mn0.01 Fe0.17 Ti0.01 Al5.64)Σ9.30 (Si3.67 Al1.02 B0.31)Σ5 O21 (OH0.99 F0.01) for Lorenzen's specimen. Textures and chemical compositions suggest that kornerupine crystallized in equilibrium in the following assemblages, all with anorthite (An 92-95) and phlogopite (XFe = atomic Fe/(Fe + Mg) = 0.028-0.035): (1) kornerupine (0.045)-gedrite (0.067); (2) kornerupine (0.038-0.050)-sapphirine (0.032-0.035); and (3) kornerupine (0.050)-hornblende. Fluorine contents of kornerupine range from 0.01 to 0.06%, of phlogopite, from 0.09 to 0.10%. In the first assemblage, sapphirine (0.040) and corundum are enclosed in radiating bundles of kornerupine; additionally sapphirine, corundum, and/or gedrite occur with chlorite and pinite (cordierite?) as breakdown products of kornerupine. Kornerupine may have formed by reactions such as: gedrite + sapphirine + corundum + B203 (in solution) + H20 = kornerupine + anorthite + Na-phlogopite under conditions of the granulite facies. Boron for kornerupine formation was most likely remobilized by hydrous fluids from metasedimentary rocks occurring along the upper contact of the Fiskenæsset gabbro-anorthosite complex with amphibolite.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Three distinct, spatially separated crustal terranes have been recognised in the Shackleton Range, East Antarctica: the Southern, Eastern and Northern Terranes. Mafic gneisses from the Southern Terrane provide geochemical evidence for a within-plate, probably back-arc origin of their protoliths. A plume-distal ridge origin in an incipient ocean basin is the favoured interpretation for the emplacement site of these rocks at c. 1850 Ma, which, together with a few ocean island basalts, were subsequently incorporated into an accretionary continental arc/supra-subduction zone tectonic setting. Magmatic underplating resulted in partial melting of the lower crust, which caused high-temperature granulite-facies metamorphism in the Southern Terrane at c. 1710-1680 Ma. Mafic and felsic gneisses there are characterised by isotopically depleted, positive Nd and Hf initials and model ages between 2100 and 2000 Ma. They may be explained as juvenile additions to the crust towards the end of the Palaeoproterozoic. These juvenile rocks occur in a narrow, c. 150 km long E-W trending belt, inferred to trace a suture that is associated with a large Palaeoproterozoic accretionary orogenic system. The Southern Terrane contains many features that are similar to the Australo-Antarctic Mawson Continent and may be its furthermost extension into East Antarctica. The Eastern Terrane is characterised by metagranitoids that formed in a continental volcanic arc setting during a late Mesoproterozoic orogeny at c. 1060 Ma. Subsequently, the rocks experienced high-temperature metamorphism during Pan-African collisional tectonics at 600 Ma. Isotopically depleted zircon grains yielded Hf model ages of 1600-1400 Ma, which are identical to Nd model ages obtained from juvenile metagranitoids. Most likely, these rocks trace the suture related to the amalgamation of the Indo-Antarctic and West Gondwana continental blocks at ~600 Ma. The Eastern Terrane is interpreted as the southernmost extension of the Pan-African Mozambique/Maud Belt in East Antarctica and, based on Hf isotope data, may also represent a link to the Ellsworth-Whitmore Mountains block in West Antarctica and the Namaqua-Natal Province of southern Africa. Geochemical evidence indicates that the majority of the protoliths of the mafic gneisses in the Northern Terrane formed as oceanic island basalts in a within-plate setting. Subsequently the rocks were incorporated into a subduction zone environment and, finally, accreted to a continental margin during Pan-African collisional tectonics. Felsic gneisses there provide evidence for a within-plate and volcanic arc/collisional origin. Emplacement of granitoids occurred at c. 530 Ma and high-temperature, high-pressure metamorphism took place at 510-500 Ma. Enriched Hf and Nd initials and Palaeoproterozoic model ages for most samples indicate that no juvenile material was added to the crust of the Northern Terrane during the Pan-African Orogeny but recycling of older crust or mixing of crustal components of different age must have occurred. Isotopically depleted mafic gneisses, which are spatially associated with eclogite-facies pyroxenites, yielded late Mesoproterozoic Nd model ages. These rocks occur in a narrow, at least 100 km long, E-W trending belt that separates alkaline ocean island metabasalts and within-plate metagranitoids from volcanic arc metabasalts and volcanic arc/syn-collisional metagranitoids in the Northern Terrane. This belt is interpreted to trace the late Neoproterozoic/early Cambrian Pan-African collisional suture between the Australo-Antarctic and the combined Indo-Antarctic/West Gondwana continental blocks that formed during the final amalgamation of Gondwana.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

George V Land (Antarctica) includes the boundary between Late Archean-Paleoproterozoic metamorphic terrains of the East Antarctic craton and the intrusive and metasedimentary rocks of the Early Paleozoic Ross-Delamerian Orogen. This therefore represents a key region for understanding the tectono-metamorphic evolution of the East Antarctic Craton and the Ross Orogen and for defining their structural relationship in East Antarctica, with potential implications for Gondwana reconstructions. In the East Antarctic Craton the outcrops closest to the Ross orogenic belt form the Mertz Shear Zone, a prominent ductile shear zone up to 5 km wide. Its deformation fabric includes a series of progressive, overprinting shear structures developed under different metamorphic conditions: from an early medium-P granulite-facies metamorphism, through amphibolite-facies to late greenschist-facies conditions. 40Ar-39Ar laserprobe data on biotite in mylonitic rocks from the Mertz Shear Zone indicate that the minimum age for ductile deformation under greenschist-facies conditions is 1502 ± 9 Ma and reveal no evidence of reactivation processes linked to the Ross Orogeny. 40Ar-39Ar laserprobe data on amphibole, although plagued by excess argon, suggest the presence of a ~1.7 Ga old phase of regional-scale retrogression under amphibolite-facies conditions. Results support the correlation between the East Antarctic Craton in the Mertz Glacier area and the Sleaford Complex of the Gawler Craton in southern Australia, and suggest that the Mertz Shear Zone may be considered a correlative of the Kalinjala Shear Zone. An erratic immature metasandstone collected east of Ninnis Glacier (~180 km east of the Mertz Glacier) and petrographically similar to metasedimentary rocks enclosed as xenoliths in Cambro-Ordovician granites cropping out along the western side of Ninnis Glacier, yielded detrital white-mica 40Ar-39Ar ages from ~530 to 640 Ma and a minimum age of 518 ± 5 Ma. This pattern compares remarkably well with those previously obtained for the Kanmantoo Group from the Adelaide Rift Complex of southern Australia, thereby suggesting that the segment of the Ross Orogen exposed east of the Mertz Glacier may represent a continuation of the eastern part of the Delamerian Orogen.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The major geologic units of the Itremo region in central Madagascar include: (1) upper amphibolite to granulite facies (higher grade) Precambrian rocks, mainly para- and orthogneisses, and migmatites; (2) the newly defined Itremo Nappes, a fold-and-thrust belt containing the Proterozoic Itremo Group sediments, metamorphosed at greenschist to lower amphibolite facies (lower grade) conditions: (3) Middle Neoproterozoic and Late Neoproterozoic-Cambrian intrusives. The stratigraphic succession of the Itremo Group in the eastern part of the Itremo region is, from bottom to top: quartzites, metapelites, metacarbonates and metapelites overlain by metacarbonates. During D1 the Itremo Group sediments were detached from their continental substratum, deformed into a fold-and-thrust nappe (Itremo Nappes), and transported on top of higher grade rocks that are intruded by Middle Neoproterozoic (c. 797–780 Ma) granites and gabbros. A second phase of deformation shortening (D2) affected both the Itremo Sedimentary Nappes and structurally underlying higher-grade rocksunits, and formed large-scale N-S-trending F2 folds. S1 axial plane foliations in Itremo Group sediments are truncated by Late Neoproterozoic-Cambrian granites (c. 570–540 Ma). The age of the formation of the Itremo Nappes is not well constrained: they formed in Neoproterozoic times between 780 and 570 Ma.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

High- to very-high-grade migmatitic basement rocks of the Wilson Hills area in northwestern Oates Land (Antarctica) form part of a low-pressure high-temperature belt located at the western inboard side of the Ross-orogenic Wilson Terrane. Zircon, and in part monazite, from four very-high grade migmatites (migmatitic gneisses to diatexites) and zircon from two undeformed granitic dykes from a central granulite-facies zone of the basement complex were dated by the SHRIMP U-Pb method in order to constrain the timing of metamorphic and related igneous processes and to identify possible age inheritance. Monazite from two migmatites yielded within error identical ages of 499 +/- 10 Ma and 493 +/- 9 Ma. Coexisting zircon gave ages of 500 +/- 4 Ma and 484 +/- 5 Ma for a metatexite (two age populations) and 475 +/- 4 Ma for a diatexite. Zircon populations from a migmatitic gneiss and a posttectonic granitic dyke yielded well-defined ages of 488 +/- 6 Ma and 482 +/- 4 Ma, respectively. There is only minor evidence of age inheritance in zircons of these four samples. Zircon from two other samples (metatexite, posttectonic granitic dyke) gave scattered 206Pb-238U ages. While there is a component similar in age and in low Th/U ratio to those of the other samples, inherited components with ages up to c. 3 Ga predominate. In the metatexite, a major detrital contribution from 545 - 680 Ma old source rocks can be identified. The new age data support the model that granulite- to high-amphibolite-facies metamorphism and related igneous processes in basement rocks of northwestern Oates Land were confined to a relatively short period of time of Late Cambrian to early Ordovican age. An age of approximately 500 Ma is estimated for the Ross-orogenic granulite-facies metamorphism from consistent ages of monazite from two migmatites and of the older zircon age population in one metatexite. The variably younger zircon ages are interpreted to reflect mineral formation in the course of the post-granulite-facies metamorphic evolution, which led to a widespread high-amphibolite-facies retrogression and in part late-stage formation of ms+bi assemblages in the basement rocks and which lasted until about 465 Ma. The presence of inherited zircon components of latest Neoproterozoic to Cambrian age indicates that the high- to very-grade migmatitic basement in northwestern Oates Land originated from clastic series of Cambrian age and, therefore, may well represent the deeper-crustal equivalent of lower-grade metasedimentary series of the Wilson Terrane.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A granodiorite from Akilia, southwest Greenland, previously suggested to date putative life-bearing rocks to greater than or equal to3.84 Ga, is re-investigated using whole-rock major and trace-element geochemistry, and detailed cathodoluminescence image-guided secondary ion mass spectrometer analyses of zircon U-Th-Pb and rare earth elements. Complex zircon internal structure reveals three episodes of zircon growth and/or recrystallization dated to c. 3.84 Ga, 3.62 Ga and 2.71 Ga. Rare earth element abundances imply a significant role for garnet in zircon generation at 3.62 Ga and 2.71 Ga. The 3.62 Ga event is interpreted as partial melting of a c. 3.84 Ga grey gneiss precursor at granulite facies with residual garnet. Migration of this 3.62 Ga magma (or melt-crystal mush) away from the melt source places a maximum age limit on any intrusive relationship. These early Archaean relationships have been complicated further by isotopic reworking in the 2.71 Ga event, which could have included a further episode of partial melting. This study highlights a general problem associated with dating thin gneissic veins in polyphase metamorphic terranes, where field relationships may be ambiguous and zircon inheritance can be expected.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This is a metamorphic study of mid-P anatectic aluminous gneisses from the Manicouagan and lac du Milieu areas of the central Grenville Province. The rocks are derived from hydrothermally altered felsic protoliths and were metamorphosed at granulite facies conditions during the Grenvillian orogeny. The samples come from three locations separated by several tens of kilometers and exhibit a wide range of textures and bulk compositions. However, they all have the same peak mineral assemblage: garnet + biotite + quartz + K-feldspar +/- plagioclase +/- sillimanite with retrograde cordierite in some, and show evidence of partial melting and melt loss. In terms of mineralogy and bulk composition, the samples were divided into two groups, sillimanite-rich and sillimanite-poor, with a high and low Alumina index in the AFM space, respectively. Phase equilibria modeling in the Na₂O–CaO–K₂O–FeO–MgO–Al₂O₃–SiO₂–H₂O– TiO₂–O (NCKFMASTHO) system using Thermocalc constrained the P–T field of the peak mineral assemblage at 800–900ºC and 6–11kbar, with melt solidification in the range of 800–865ºC and 6–8kbar. The presence of sillimanite inclusions in garnet, and of only scarce, retrograde cordierite, is consistent with moderate dP/dT gradient ‘hairpin’ P– T paths, which were similar between the three locations. This study also investigated the role of Fe3+ on phase stability in mid-P aluminous systems. Fe³⁺ is problematic because although it is incorporated in the NaCKFMASTHO system, it is rarely measured in modeled minerals and rocks and its value is generally assumed. Biotite may contain significant amounts of Fe³⁺, and these were analysed by Mössbauer spectroscopy in selected samples, where they were found to be low (0-4%). In addition, the effect of increasing the bulk Fe³⁺ in the mid-P portion of phase diagrams was modeled. This increase added new minor phases and changed the phase proportions, as well as shifted phase boundaries to a small degree, but P–T paths remained largely unaffected. Finally, the two methods commonly used in phase equilibria modeling to account for melt loss were compared. In some cases there were major differences in the topologies between the ‘melt reintegration’ and ‘adding water’ methods, but the former method is the most consistent with the rock data, and should be the method of choice.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Samples of high grade metamorphic basement rocks of Wilson Terrane cropping out in the Deep Freeze Range and on Kay Island were collected during GANOVEX VI to study their isotopic evolution. The age and origin of granulite facies gneisses and of their migmatite host rocks are especially of interest for the interpretation of the geological and tectonic development of North Victoria Land. Another important research aspect is the influence of the polyphase metamorphic evolution on the isotopic systems of whole rocks and minerals like zircon, garnet, orthopyroxene, amphibole and feldspar.