452 resultados para GRANITE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epidote-group minerals, together with albite, quartz, fluorite, Al-poor and Fe-rich phyllosilicates, zircon, and minor oxides and sulphides, are typical hydrothermal phases in peralkaline alkali-feldspar granites from the Corupá Pluton, Graciosa Province, South Brazil. The epidote-group minerals occur as single crystals and as aggregates filling in rock interstices and miarolitic cavities. They display complex recurrent zoning patterns with an internal zone of ferriallanite-(Ce), followed by allanite-(Ce), then epidote-ferriepidote, and an external zone with allanite-(Ce), with sharp limits, as shown in BSE and X-ray images. REE patterns show decreasing fractionation degrees of LREE over HREE from ferriallanite to epidote. The most external allanite is enriched in MREE. LA-ICP-MS data indicate that ferriallanite is enriched (>10-fold) in Ti, Sr and Ga, and depleted in Mg, Rb, Th and Zr relative to the host granite. Allanite has lower Ga and Mn and higher Zr, Nb and U contents as compared to ferriallanite, while epidote is enriched in Sr, U and depleted in Pb, Zr, Hf, Ti and Ga. The formation of these minerals is related to the variable concentrations of HFSE, Ca, Al, Fe and F in fluids remaining from magmatic crystallization, in an oxidizing environment, close to the HM buffer. L-MREE were in part released by the alteration of chevkinite, their main primary repository in the host rocks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most available studies of interconnected matrix porosity of crystalline rocks are based on laboratory investigations; that is, work on samples that have undergone stress relaxation and were affected by drilling and sample preparation. The extrapolation of the results to in situ conditions is therefore associated with considerable uncertainty, and this was the motivation to conduct the ‘in situ Connected Porosity’ experiment at the Grimsel Test Site (Central Swiss Alps). An acrylic resin doped with fluorescent agents was used to impregnate the microporous granitic matrix in situ around an injection borehole, and samples were obtained by overcoring. The 3-D structure of the porespace, represented by microcracks, was studied by U-stage fluorescence microscopy. Petrophysical methods, including the determination of porosity, permeability and P -wave velocity, were also applied. Investigations were conducted both on samples that were impregnated in situ and on non-impregnated samples, so that natural features could be distinguished from artefacts. The investigated deformed granites display complex microcrack populations representing a polyphase deformation at varying conditions. The crack population is dominated by open cleavage cracks in mica and grain boundary cracks. The porosity of non-impregnated samples lies slightly above 1 per cent, which is 2–2.5 times higher than the in situ porosity obtained for impregnated samples. Measurements of seismic velocities (Vp ) on spherical rock samples as a function of confining pressure, spatial direction and water saturation for both non-impregnated and impregnated samples provide further constraints on the distinction between natural and induced crack types. The main conclusions are that (1) an interconnected network of microcracks exists in the whole granitic matrix, irrespective of the distance to ductile and brittle shear zones, and (2) conventional laboratory methods overestimate the matrix porosity. Calculations of contaminant transport through fractured media often rely on matrix diffusion as a retardation mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Gangdese belt, Tibet, records the opening and closure of the Neo-Tethyan ocean and the resultant collision between the Indian and Eurasian plates. Mesozoic magmatic rocks generated through subduction of the Tethyan oceanic slab constitute the main component of the Gangdese belt, and play a crucial role in understanding the formation and evolution of the Neo-Tethyan tectonic realm. U-Pb and Lu-Hf isotopic data for tonalite and granodiorite from the Xietongmen-Nymo segment of the Gangdese belt indicate a significant pulse of Jurassic magmatism from 184 Ma to 168 Ma. The magmatic rocks belong to metaluminous medium-K calc-alkaline series, characterized by regular variation in major element compositions with SiO2 of 61.35%-73.59 wt%, low to moderate MgO (0.31%-2.59%) with Mg# of 37-45. These magmatic rocks are also characterized by LREE enrichment with concave upward trend in MREE on the chondrite-normalized REE patterns, and also LILE enrichment and depletion in Nb, Ta and Ti in the primitive mantle normalized spidergrams. These rocks have high zircon ?Hf(t) values of + 10.94 to + 15.91 and young two-stage depleted mantle model ages (TDM2) of 192 Ma to 670 Ma. The low MgO contents and relatively depleted Hf isotope compositions, suggest that the granitoid rocks were derived from the partial melting of the juvenile basaltic lower crust with minor mantle materials injected. In combined with the published data, it is suggested that northward subduction of the Neo-Tethyan slab beneath the Lhasa terrane began by the Late-Triassic, which formed a major belt of arc-related magmatism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monument conservation is related to the interaction between the original petrological parameters of the rock and external factors in the area where the building is sited, such as weather conditions, pollution, and so on. Depending on the environmental conditions and the characteristics of the materials used, different types of weathering predominate. In all, the appearance of surface crusts constitutes a first stage, whose origin can often be traced to the properties of the material itself. In the present study, different colours of “patinas” were distinguished by defining the threshold levels of greys associated with “pathology” in the histogram. These data were compared to background information and other parameters, such as mineralogical composition, porosity, and so on, as well as other visual signs of deterioration. The result is a map of the pathologies associated with “cover films” on monuments, which generate images by relating colour characteristics to desired properties or zones of interest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bemis, responding to an advertisement from Lowell and Baldwin requesting bids for building materials, outlines his proposal for using Chelmsford granite for the construction of University Hall. Bemis lists 12 stipulations in his proposal including costs per bricks, techniques for constructing the upper storeys, and labor costs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Greater Himalayan leucogranites are a discontinuous suite of intrusions emplaced in a thickened crust during the Miocene southward ductile extrusion of the Himalayan metamorphic core. Melt-induced weakening is thought to have played a critical role in strain localization that facilitated the extrusion. Recent advancements in centrifuge analogue modelling techniques allow for the replication of a broader range of crustal deformation behaviors, enhancing our understanding of large hot orogens. Polydimethylsiloxane (PDMS) is commonly used in centrifuge experiments to model weak melt zones. Difficulties in handling PDMS had, until now, limited its emplacement in models prior to any deformation. A new modelling technique has been developed where PDMS is emplaced into models that have been subjected to some shortening. This technique aims to better understand the effects of melt on strain localization and potential decoupling between structural levels within an evolving orogenic system. Models are subjected to an early stage of shortening, followed by the introduction of PDMS, and then a final stage of shortening. Theoretical percentages of partial melt and their effect on rock strength are considered when adding a specific percentage of PDMS in each model. Due to the limited size of the models, only PDMS sheets of 3 mm thickness were used, which varied in length and width. Within undeformed packages, minimal surface and internal deformation occurred when PDMS is emplaced in the lower layer of the model, showing a vertical volume increase of ~20% within the package; whereas the emplacement of PDMS into the middle layer showed internal dragging of the middle laminations into the lower layer and a vertical volume increase ~30%. Emplacement of PDMS results in ~7% shortening for undeformed and deformed models. Deformed models undergo ~20% additional shortening after two rounds of deformation. Strain localization and decoupling between units occur in deformed models where the degree of deformation changes based on the amount of partial melt present. Surface deformation visible by the formation of a bulge, mode 1 extension cracks and varying surface strain ellipses varies depending if PDMS is present. Better control during emplacement is exhibited when PDMS is added into cooler models, resulting in reduced internal deformation within the middle layer.