989 resultados para GOURD BEES
Resumo:
In severe and variable conditions, specialized resource selection strategies should be less fre‐ quent because extinction risks increase for species that depend on a single and unstable resource. Psithyrus (Bombus subgenus Psithyrus) are bumblebee parasites that usurp Bombus nests and display inter‐specific variation in the number of hosts they parasitize. Using a phylogenetic comparative frame‐ work, we show that Psithyrus species at higher elevations display a higher number of hosts species com‐ pared with species restricted to lower elevations. Species inhabiting high elevations also cover a larger temperature range, suggesting that species able to occur in colder conditions may benefit from recruit‐ ment from populations occurring in warmer conditions. Our results provide evidence for an 'altitudinal niche breadth hypothesis' in parasitic species, showing a decrease in the parasites' specialization along the elevational gradient, and also suggesting that Rapoport's rule might apply to Psithyrus.
Resumo:
The function of silk web decorations in orb weaving spiders has been debated for decades. The most accepted hypothesized functions are that web decorations I) provide camouflage against predators, 2) are an advertisement for vertebrates to avoid web damage, or 3) increase the attraction of prey to the web. Most studies have focused on only a few genera, Argiope being the most common. In this study, I evaluated the prey attraction hypothesis of silk decorations for a species of a poorly studied genus in this topic, Micrathena sexpinosa Hahn 1822. I used a web-choice experiment in which I presented empty or web-bearing frames at the end of a tunnel to stingless bees (Tetragonisca angustula). This frame-choice experiment consisted of the following comparisons: decorated web vs. empty frame, decorated web vs. undecorated web, and undecorated web vs. empty frame. Webs with decoration intercepted significantly more bees than empty frames and undecorated webs. Therefore, the decorations of Micrathena sexpinosa might play a role in increasing foraging success.
Resumo:
Oil-collecting bees are found worldwide and always in association with particular oil-producing flowers. In the Western Palearctic, three oil-collecting bee species within the genus Macropis (Hymenoptera, Melittidae) interact in a tight pollination mutualism with species of the only European oil-producing plant genus Lysimachia L. (Myrsinaceae). Two of these oil-collecting bees (Macropis europaea and Macropis fulvipes) show overlapping geographic distributions, comparable morphologies, and similar ecological characteristics (e.g., habitat type, floral preferences). In view of these similarities, we presume that hybridization should occur between the two species unless potential variation among the species' ecological niches prevents it, simultaneously decreasing competition for resources. Using modern genetic analyses and ecological niche modeling on a large bee sampling throughout Europe, we discuss new perspectives on the ecology and evolutionary history of this mutualism.
Resumo:
As increasingly large molecular data sets are collected for phylogenomics, the conflicting phylogenetic signal among gene trees poses challenges to resolve some difficult nodes of the Tree of Life. Among these nodes, the phylogenetic position of the honey bees (Apini) within the corbiculate bee group remains controversial, despite its considerable importance for understanding the emergence and maintenance of eusociality. Here, we show that this controversy stems in part from pervasive phylogenetic conflicts among GC-rich gene trees. GC-rich genes typically have a high nucleotidic heterogeneity among species, which can induce topological conflicts among gene trees. When retaining only the most GC-homogeneous genes or using a nonhomogeneous model of sequence evolution, our analyses reveal a monophyletic group of the three lineages with a eusocial lifestyle (honey bees, bumble bees, and stingless bees). These phylogenetic relationships strongly suggest a single origin of eusociality in the corbiculate bees, with no reversal to solitary living in this group. To accurately reconstruct other important evolutionary steps across the Tree of Life, we suggest removing GC-rich and GC-heterogeneous genes from large phylogenomic data sets. Interpreted as a consequence of genome-wide variations in recombination rates, this GC effect can affect all taxa featuring GC-biased gene conversion, which is common in eukaryotes.
Resumo:
Species of Cucurbitaceae are cultivated worldwide and are depend on bee pollination for fruit set. Field and lab experiments were conducted at Cornell University, Ithaca, NY, during 1996 and 1997 to determine "Howden" pumpkin (Cucurbita pepo L.) pollen removal and deposition by honeybees and factors relating to male flower attractiveness. Several parameters were evaluated in flowers at anthesis: (1) removal of pollen from anthers by honey bees, (2) pollen deposition on the stigma by honey bees, (3) amount of pollen on the body of honey bees, (4) fruit set after bee pollination, and (5) male flower nectary's pores and flower attractiveness. Honey bees carried between 1,050 to 3,990 pollen grains and 13,765 were removed from an anther after one visit. The amount of pollen deposited on the stigma by the honey bees varied according to the number of visits, from 53 grains with one visit, to 1,253 grains with 12 visits, and the mean number of grains in each visit varied from 53 to 230 grains. The percentage of established fruits was higher (100%) when the flowers received 12 visits of Apis mellifera, corresponding to a load 1,253 pollen grains. The attractiveness of the male flower for pollen and nectar collection was increased by the degree of opening of the access pore to the nectary in the flower.
Resumo:
The first experiments on sex determination in bees began with Dzierzon, Meves, Nachtsheim, Paulcke, Petrunkewitsch, Manning. Whiting, (1943) found multiple alleles in Bracon xo that are the Rosetta stone of sex determination in Hymenoptera. Whiting also discovered that some species of microhymenoptera do not possess xo sex alleles. Therefore, Hymenoptera apparently presents two types of sex determination superimposed on haplodiploidy. In the panmictic groups hemizygous (xo1, xo2,... xon) and homozygous (xo1xo1, xo2xo2... xonxon) are males while heterozygous (xo1xo2, ... xon-1xon) are females. There is no such series of xon in endogamous Hymenoptera, since the constant elimination of diploid males would be damaging to the population and the mutation of xo to xon would be quickly eliminated. Besides the Whiting hypothesis, four others are discussed. The new hypothesis of genomic imprinting, of Beukeboom, is eliminated since: a) spermatozoa that develop within the egg produce male tissue; b) telitokous parthenogenesis due to the fusion of two haploid cells develop into females; c) last instar larvae treated with juvenile hormone become queens. The Cunha and Kerr hypothesis (female determining genes are totally or partially additive and male determination is totally or partially nonadditive) explains all known cases. The xo is a female determining gene. Sex determination in social bees led to the gradual evolution of two systems of caste determination: one in which queens and workers are similar and males are very different (Apinae), and another in which workers and males are very similar and both very different from the queens (Meliponinae). This second system in stingless bees implies that many of the mutations that improve worker capacities also affect the males that will carry out some activities that in Apis are clearly female ones. Ten of these activities are described.
Resumo:
This study examined the bee fauna of the Carolinian Zone in Ontario, Canada. In 2003, 15687 individuals from 152 species of bees were collected. Tliere were many rare species but few abundant species. There were three distinct bee seasons. The Niagara bee assemblage was less diverse compared to other Carolinian Zone assemblages and types of landscapes. This study also examined how anthropogenic disturbance affects the diversity of bee assemblages. The intermediate disturbance hypothesis (IDH) was tested by selecting field sites subject to low, intermediate, and high disturbance. Intermediate disturbance had the highest species richness (SR=1 15) and most bees (N=556I), followed by low disturbance (SR= 100, N=2975), then high disturbance (SR=72, N=1364), supporting the IDH. Increased species richness in areas of intermediate disturbance was due to higher abundance, possibly because more blooming flowers were found there. Bees were larger in high disturbance areas but smaller in areas of high and intermediate disturbance.
Resumo:
Many arthropods exhibit behaviours precursory to social life, including adult longevity, parental care, nest loyalty and mutual tolerance, yet there are few examples of social behaviour in this phylum. The small carpenter bees, genus Ceratina, provide important insights into the early stages of sociality. I described the biology and social behaviour of five facultatively social species which exhibit all of the preadaptations for successful group living, yet present ecological and behavioural characteristics that seemingly disfavour frequent colony formation. These species are socially polymorphic with both / solitary and social nests collected in sympatry. Social colonies consist of two adult females, one contributing both foraging and reproductive effort and the second which remains at the nest as a passive guard. Cooperative nesting provides no overt reproductive benefits over solitary nesting, although brood survival tends to be greater in social colonies. Three main theories explain cooperation among conspecifics: mutual benefit, kin selection and manipulation. Lifetime reproductive success calculations revealed that mutual benefit does not explain social behaviour in this group as social colonies have lower per capita life time reproductive success than solitary nests. Genetic pedigrees constructed from allozyme data indicate that kin selection might contribute to the maintenance of social nesting -, as social colonies consist of full sisters and thus some indirect fitness benefits are inherently bestowed on subordinate females as a result of remaining to help their dominant sister. These data suggest that the origin of sociality in ceratinines has principal costs and the great ecological success of highly eusociallineages occurred well after social origins. Ecological constraints such as resource limitation, unfavourable weather conditions and parasite pressure have long been considered some of the most important selective pressures for the evolution of sociality. I assessed the fitness consequences of these three ecological factors for reproductive success of solitary and social colonies and found that nest sites were not limiting, and the frequency of social nesting was consistent across brood rearing seasons. Local weather varied between seasons but was not correlated with reproductive success. Severe parasitism resulted in low reproductive success and total nest failure in solitary nests. Social colonies had higher reproductive success and were never extirpated by parasites. I suggest that social nesting represents a form of bet-hedging. The high frequency of solitary nests suggests that this is the optimal strategy when parasite pressure is low. However, social colonies have a selective advantage over solitary nesting females during periods of extreme parasite pressure. Finally, the small carpenter bees are recorded from all continents except Antarctica. I constructed the first molecular phylogeny of ceratinine bees based on four gene regions of selected species covering representatives from all continents and ecological regions. Maximum parsimony and Bayesian Inference tree topology and fossil dating support an African origin followed by an Old World invasion and New World radiation. All known Old World ceratinines form social colonies while New World species are largely solitary; thus geography and phylogenetic inertia are likely predictors of social evolution in this genus. This integrative approach not only describes the behaviour of several previously unknown or little-known Ceratina species, bu~ highlights the fact that this is an important, though previously unrecognized, model for studying evolutionary transitions from solitary to social behaviour.
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
La obra, aprobada por expertos en educación, trata temas reales de la vida. El lenguaje sencillo que se utiliza ayuda al niño a desarrollar su interés por la lectura y la curiosidad por el mundo en que vive. Tiene glosario alfabético.
Resumo:
Habitat loss poses a major threat to biodiversity, and species-specific extinction risks are inextricably linked to life-history characteristics. This relationship is still poorly documented for many functionally important taxa, and at larger continental scales. With data from five replicated field studies from three countries, we examined how species richness of wild bees varies with habitat patch size. We hypothesized that the form of this relationship is affected by body size, degree of host plant specialization and sociality. Across all species, we found a positive species–area slope (z ¼ 0.19), and species traits modified this relationship. Large-bodied generalists had a lower z value than small generalists. Contrary to predictions, small specialists had similar or slightly lower z value compared with large specialists, and small generalists also tended to be more strongly affected by habitat loss as compared with small specialists. Social bees were negatively affected by habitat loss (z ¼ 0.11) irrespective of body size. We conclude that habitat loss leads to clear shifts in the species composition of wild bee communities.
Resumo:
Recent concerns regarding the decline of plant and pollinator species, and the impact on ecosystem functioning, has focused attention on the local and global threats to bee diversity. As evidence for bee declines is now accumulating from over broad taxonomic and geographic scales, we review the role of ecology in bee conservation at the levels of species, populations and communities. Bee populations and communities are typified by considerable spatiotemporal variation; whereby autecological traits, population size and growth rate, and plant-pollinator network architecture all play a role in their vulnerability to extinction. As contemporary insect conservation management is broadly based on species- and habitat-targeted approaches, ecological data will be central to integrating management strategies into a broader, landscape scale of dynamic, interconnected habitats capable of delivering bee conservation in the context of global environmental change.
Resumo:
Growing evidence indicates that European managed honey bees are in decline, but information for Europe remains patchy and localized. Here we compile data from 18 European countries to assess trends in the number of honey bee colonies and beekeepers between 1965 and 2005. We found consistent declines in colony numbers in central European countries and some increases in Mediterranean countries. Beekeeper numbers have declined in all of the European countries examined. Our data support the view that honey bees are in decline at least in some regions, which is probably closely linked to the decreasing number of beekeepers. Our data on colony numbers and beekeepers must, however, be interpreted with caution due to different approaches and socioeconomic factors in the various countries, thereby limiting their comparability. We therefore make specific recommendations for standardized methodologies to be adopted at the national and global level to assist in the future monitoring of honey bees.