80 resultados para GMR


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interferon regulatory factor 1 (IRF1) is functionally diverse in the regulation of immune response and is considered to be an important candidate gene for studying disease susceptibility in mammals. In this paper, we characterized the whole sequence of the IRF1 gene in river buffalo (Bubalus bubalis) and compared genomic and the amino acid sequences between different species. The buffalo IRF1 gene was 7099 bp long and organized into 10 exons and nine introns. Its molecular structure showed exactly the same number of exons (10) and introns (nine) in bovids, mice, horses, humans, and chickens. However, rats did not have exon 5, but had the largest exon 4, which suggests that exon 5 was incorporated into exon 4. The coding and the amino acid sequences of the gene showed that identity varied from 73 to 99% at the coding sequence level and from 61 to 100% at the amino acid level when compared with other mammals and chickens. Comparative analysis of the gene sequence between two different buffalo breeds, Murrah and Mediterranean, revealed six potential SNPs that are primarily located in the 5' and 3'UTRs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study reports the implementation of GMPs in a mozzarella cheese processing plant. The mozzarella cheese manufacturing unit is located in the Southwestern region of the state of Parana, Brazil, and processes 20,000 L of milk daily. The implementation of GMP took place with the creation of a multi-disciplinary team and it was carried out in four steps: diagnosis, report of the diagnosis and road map, corrective measures and follow-up of GMP implementation. The effectiveness of actions taken and GMP implementation was compared by the total percentages of non-conformities and conformities before and after implementation of GMR Microbiological indicators were also used to assess the implementation of GMP in the mozzarella cheese processing facility. Results showed that the average percentage of conformity after the implementation of GMP was significant increased to 66%, while before it was 32% (p < 0.05). The populations of aerobic microorganisms and total coliforms in equipment were significantly reduced (p < 0.05) after the implementation of GMP, as well as the populations of total coliforms in the hands of food handlers (p < 0.05). In conclusion, GMP implementation changed the overall organization of the cheese processing unity, as well as managers and food handlers' behavior and knowledge on the quality and safety of products manufactured. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[ES] El Instituto Tecnológico de Canarias (ITC), como coordinador del Proyecto OMARCOST, junto a los socios Instituto Español de Oceanografía (IEO) y Gestión del Medio Rural de Canarias (GMR Canarias) han editado esta sencilla obra divulgativa que resume los principales resultados obtenidos en el marco de este Proyecto de Cooperación española-marroquí cofinanciado por el Programa de Cooperación Transfronteriza POCTEFEX. El libro resume más de dos años de investigaciones; concretamente explica los estudios realizados, las herramientas y metodologías novedosas aplicadas y la transferencia de conocimiento y divulgación realizada. Todo ello, ha beneficiado directamente en la implementación nacional y regional de las políticas europea y nacional en materia de aguas y protección del medio marino.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heusler- und Halb-Heusler-Phasen konnten als Verbindungsklasse identifiziert werden, neue Materialien für die Magnetoelektronik bereitzustellen. Auf Basis eines theoretischen Modells konnte das Auftreten eines hohen MR-Effekts auf bestimmte Valenzelektronenzahlen (VEK) präzisiert werden. Dazu muß ein dreiteiliger 'Fingerabdruck' in der Bandstruktur (Sattelpunkt, Spindichtewelle, lokales magnetisches Moment) vorliegen. Es existieren eine Vielzahl von halbmetallischen Ferromagneten in dieser Verbindungsklasse. Die variable Valenzelektronenkonzentrationen, die sich auch aus den hochsymmetrischen Strukturen ergeben, erlauben eine gute Dotierbarkeit der Phasen. Dadurch ist die Möglichkeit gegeben, die Phase exakt mit der geforderten VEK zu synthetisieren. Curietemperaturen > 500 K sind in Hinblick auf die technische Anwendbarkeit notwendig. PdMnTe hat nicht die Voraussetzungen für einen PMR-Effekt in der Bandstrukturrechnung, doch die Nähe zu einer halbmetallischen Zustandsdichte resultiert in einen negativen CMR-Effekt unterhalb des magnetischen Übergangs von MR0 = 18 % bei 4 K. Die Zusammenhänge von Probenpräparation zum magnetischen Sättigungsmoment konnten an Co2CrAl aufgedeckt werden. Die unter Anwendung des vorgestellten Modells synthetisierte Heusler-Phase Co2Cr0.6Fe0.4Al (VEK = 27.8) weisen den erwarteten MR-Effekt auf. Der gemessene PMR-Effekt ist größer als bei den GMR-Systemen (bei geringerer Feldempfindlichkeit) und anderen granularen Materialien wie CrO2 bei 295 K. Co2Cr0.6Fe0.4Al zeigt bei 295 K einen hohen negativen Magnetowiderstand von 30 % bei einem Sättigungsfeld von 0.2 Tesla. Durch die Beimischung von Oxiden und Polymeren sind Komposit-Materialien entwickelt worden, die MR0-Effekte von bis zu 88% mit einer verbesserten Feldempfindlichkeit von 0.1 Tesla bei Al2O3 und 0.05 Tesla bei den Oberflächenbeschichtungen zeigen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work emphasizes the potential of Heusler compounds in a wide range of spintronic applications. Using electronic structure calculations it is possible to design compounds for specific applications. Examples for GMR and TMR applications, for spin injection into semiconductors, and for spin torque transfer applications will be shown. After a detailed introduction about spintronics and related materials chapter 5 reports about the investigation of new half-metallic compounds where the Fermi energy is tuned in the middle of the gap to result in more stable compounds for GMR and TMR applications. The bulk properties of the quaternary Heusler alloy Co2Mn(1-x)Fe(x)Si with the Fe concentration ranging from x=0 to 1 will be reported and the results suggest that the best candidate for applications may be found at an iron concentration of about 50%. Due to the effect that in the Co2Mn(1-x)Fe(x)Si series the transition metal carrying the localized moment is exchanged and this might lead to unexpected effects on the magnetic properties if the samples are not completely homogeneous chapter 6 reports about the optimization of the Heusler compounds for GMR and TMR applications. The structural and magnetic properties of the quaternary Heusler alloy Co2FeAl(1-x)Si(x) with varying Si concentration will be reported. From the combination of experimental (better order for high Si content) and theoretical findings (robust gap at x = 0.5) it is concluded that a compound with an intermediate Si concentration close to x=0.5-0.7 would be best suited for spintronic applications, especially for GMR and TMR applications. In chapter 7 the detailed investigation of compounds for spin injection into semiconductors will be reported. It will be shown that the diluted magnetic semiconductors based on CoTiSb with a very low lattice mismatch among each other are interesting materials for spintronics applications like Spin-LEDs or other spin injection devices. Chapter 8 refers about the investigation of the theoretically predicted half-metallic completely compensated-ferrimagnet Mn$_3$Ga as a suitable material for spin torque transfer applications. The Curie temperature is above 730~K and the electronic structure calculations indicate a nearly half-metallic ferrimagnetic order with 88% spin polarization at the Fermi energy.}

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The so called material science is an always growing field in modern research. For the development of new materials not only the experimental characterization but also theoretical calculation of the electronic structure plays an important role. A class of compounds that has attracted a great deal of attention in recent years is known as REME compounds. These compounds are often referred to with RE designating rare earth, actinide or an element from group 1 - 4, M representing a late transition metal from groups 8 - 12, and E belonging to groups 13 - 15. There are more than 2000 compounds with 1:1:1 stoichiometry belonging to this class of compounds and they offer a broad variety of different structure types. Although many REME compounds are know to exist, mainly only structure and magnetism has been determined for these compounds. In particular, in the field of electronic and transport properties relatively few efforts have been made. The main focus in this study is on compounds crystallizing in MgAgAs and LiGaGe structure. Both structures can only be found among 18 valence electron compounds. The f electrons are localized and therefor not count as valence electrons. A special focus here was also on the magnetoresistance effects and spintronic properties found among the REME compounds. An examination of the following compounds was made: GdAuE (E = In, Cd, Mg), GdPdSb, GdNiSb, REAuSn (RE = Gd, Er, Tm) and RENiBi (RE = Pr, Sm, Gd - Tm, Lu). The experimental results were compared with theoretic band structure calculations. The first half metallic ferromagnet with LiGaGe structure (GdPdSb) was found. All semiconducting REME compounds with MgAgAs structure show giant magnetoresistance (GMR) at low temperatures. The GMR is related to a metal-insulator transition, and the value of the GMR depends on the value of the spin-orbit coupling. Inhomogeneous DyNiBi samples show a small positive MR at low temperature that depends on the amount of metallic impurities. At higher fields the samples show a negative GMR. Inhomogeneous nonmagnetic LuNiBi samples show no negative GMR, but a large positive MR of 27.5% at room temperature, which is interesting for application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Key technology applications like magnetoresistive sensors or the Magnetic Random Access Memory (MRAM) require reproducible magnetic switching mechanisms. i.e. predefined remanent states. At the same time advanced magnetic recording schemes push the magnetic switching time into the gyromagnetic regime. According to the Landau-Lifschitz-Gilbert formalism, relevant questions herein are associated with magnetic excitations (eigenmodes) and damping processes in confined magnetic thin film structures.rnObjects of study in this thesis are antiparallel pinned synthetic spin valves as they are extensively used as read heads in today’s magnetic storage devices. In such devices a ferromagnetic layer of high coercivity is stabilized via an exchange bias field by an antiferromagnet. A second hard magnetic layer, separated by a non-magnetic spacer of defined thickness, aligns antiparallel to the first. The orientation of the magnetization vector in the third ferromagnetic NiFe layer of low coercivity - the freelayer - is then sensed by the Giant MagnetoResistance (GMR) effect. This thesis reports results of element specific Time Resolved Photo-Emission Electron Microscopy (TR-PEEM) to image the magnetization dynamics of the free layer alone via X-ray Circular Dichroism (XMCD) at the Ni-L3 X-ray absorption edge.rnThe ferromagnetic systems, i.e. micron-sized spin valve stacks of typically deltaR/R = 15% and Permalloy single layers, were deposited onto the pulse leading centre stripe of coplanar wave guides, built in thin film wafer technology. The ferromagnetic platelets have been applied with varying geometry (rectangles, ellipses and squares), lateral dimension (in the range of several micrometers) and orientation to the magnetic field pulse to study the magnetization behaviour in dependence of these magnitudes. The observation of magnetic switching processes in the gigahertz range became only possible due to the joined effort of producing ultra-short X-ray pulses at the synchrotron source BESSY II (operated in the so-called low-alpha mode) and optimizing the wave guide design of the samples for high frequency electromagnetic excitation (FWHM typically several 100 ps). Space and time resolution of the experiment could be reduced to d = 100 nm and deltat = 15 ps, respectively.rnIn conclusion, it could be shown that the magnetization dynamics of the free layer of a synthetic GMR spin valve stack deviates significantly from a simple phase coherent rotation. In fact, the dynamic response of the free layer is a superposition of an averaged critically damped precessional motion and localized higher order spin wave modes. In a square platelet a standing spin wave with a period of 600 ps (1.7 GHz) was observed. At a first glance, the damping coefficient was found to be independent of the shape of the spin-valve element, thus favouring the model of homogeneous rotation and damping. Only by building the difference in the magnetic rotation between the central region and the outer rim of the platelet, the spin wave becomes visible. As they provide an additional efficient channel for energy dissipation, spin waves contribute to a higher effective damping coefficient (alpha = 0.01). Damping and magnetic switching behaviour in spin valves thus depend on the geometry of the element. Micromagnetic simulations reproduce the observed higher-order spin wave mode.rnBesides the short-run behaviour of the magnetization of spin valves Permalloy single layers with thicknesses ranging from 3 to 40 nm have been studied. The phase velocity of a spin wave in a 3 nm thick ellipse could be determined to 8.100 m/s. In a rectangular structure exhibiting a Landau-Lifschitz like domain pattern, the speed of the field pulse induced displacement of a 90°-Néel wall has been determined to 15.000 m/s.rn

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Il fenomeno della magnetoresistenza gigante (GMR) consiste nella marcata variazione della resistenza elettrica di una struttura in forma di film sottile, composta da un’alternanza di strati metallici ferromagnetici (FM) e non magnetici (NM), per effetto di un campo magnetico esterno. Esso è alla base di un gran numero di sensori e dispositivi magnetoelettronici (come ad esempio magnetiche ad accesso casuale, MRAM, ad alta densità) ed ulteriori innovazioni tecnologiche sono in via di elaborazione. Particolarmente rilevanti sono diventate le Spin Valve, dispositivi composti da due strati FM separati da uno spaziatore NM, metallico. Uno dei due film FM (free layer) è magneticamente più soffice rispetto all’altro (reference layer), la cui magnetizzazione è fissata mediante accoppiamento di scambio all’interfaccia con uno strato antiferromagnetico (AFM) adiacente. Tale accoppiamento causa l’insorgenza di una anisotropia magnetica unidirezionale (anisotropia di scambio) per lo strato FM, che si manifesta in uno shift orizzontale del ciclo di isteresi ad esso associato (effetto di exchange bias), solitamente accompagnato anche da un aumento del campo coercitivo. Questo lavoro di tesi riporta la deposizione e la caratterizzazione magnetica e magnetoresistiva di due valvole spin, una a struttura top (SVT) composta da strati di Si/Cu[5 nm]/Py[5 nm]/Cu[5 nm]/Py[5 nm]/IrMn[10 nm], ed una a struttura bottom (SVB), di composizione Si/Cu[5 nm]/IrMn[10 nm]/Py[5 nm]/Cu[5 nm]/Py[5 nm], allo scopo di verificare il comportamento magnetoresistivo gigante del dispositivo per questa particolare scelta dei materiali. I campioni sono stati depositati mediante DC Magnetron sputtering, e caratterizzati magneticamente mediante magnetometro SQUID; la caratterizzazione resistiva è stata eseguita tramite metodo di van der Pawn. Vengono infine presentati i risultati sperimentali, in cui si osserva una variazione di magnetoresistenza nei campioni nell’ordine del punto percentuale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The treatment of multiple myeloma has undergone significant changes in the recent past. The arrival of novel agents, especially thalidomide, bortezomib and lenalidomide, has expanded treatment options and patient outcomes are improving significantly. This article summarises the discussions of an expert meeting which was held to debate current treatment practices for multiple myeloma in Switzerland concerning the role of the novel agents and to provide recommendations for their use in different treatment stages based on currently available clinical data. Novel agent combinations for the treatment of newly diagnosed, as well as relapsed multiple myeloma are examined. In addition, the role of novel agents in patients with cytogenetic abnormalities and renal impairment, as well as the management of the most frequent side effects of the novel agents are discussed. The aim of this article is to assist in treatment decisions in daily clinical practice to achieve the best possible outcome for patients with multiple myeloma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interest in the study of magnetic/non-magnetic multilayered structures took a giant leap since Grünberg and his group established that the interlayer exchange coupling (IEC) is a function of the non-magnetic spacer width. This interest was further fuelled by the discovery of the phenomenal Giant Magnetoresistance (GMR) effect. In fact, in 2007 Albert Fert and Peter Grünberg were awarded the Nobel Prize in Physics for their contribution to the discovery of GMR. GMR is the key property that is being used in the read-head of the present day computer hard drive as it requires a high sensitivity in the detection of magnetic field. The recent increase in demand for device miniaturization encouraged researchers to look for GMR in nanoscale multilayered structures. In this context, one dimensional(1-D) multilayerd nanowire structure has shown tremendous promise as a viable candidate for ultra sensitive read head sensors. In fact, the phenomenal giant magnetoresistance(GMR) effect, which is the novel feature of the currently used multilayered thin film, has already been observed in multilayered nanowire systems at ambient temperature. Geometrical confinement of the supper lattice along the 2-dimensions (2-D) to construct the 1-D multilayered nanowire prohibits the minimization of magnetic interaction- offering a rich variety of magnetic properties in nanowire that can be exploited for novel functionality. In addition, introduction of non-magnetic spacer between the magnetic layers presents additional advantage in controlling magnetic properties via tuning the interlayer magnetic interaction. Despite of a large volume of theoretical works devoted towards the understanding of GMR and IEC in super lattice structures, limited theoretical calculations are reported in 1-D multilayered systems. Thus to gauge their potential application in new generation magneto-electronic devices, in this thesis, I have discussed the usage of first principles density functional theory (DFT) in predicting the equilibrium structure, stability as well as electronic and magnetic properties of one dimensional multilayered nanowires. Particularly, I have focused on the electronic and magnetic properties of Fe/Pt multilayered nanowire structures and the role of non-magnetic Pt spacer in modulating the magnetic properties of the wire. It is found that the average magnetic moment per atom in the nanowire increases monotonically with an ~1/(N(Fe)) dependance, where N(Fe) is the number of iron layers in the nanowire. A simple model based upon the interfacial structure is given to explain the 1/(N(Fe)) trend in magnetic moment obtained from the first principle calculations. A new mechanism, based upon spin flip with in the layer and multistep electron transfer between the layers, is proposed to elucidate the enhancement of magnetic moment of Iron atom at the Platinum interface. The calculated IEC in the Fe/Pt multilayered nanowire is found to switch sign as the width of the non-magnetic spacer varies. The competition among short and long range direct exchange and the super exchange has been found to play a key role for the non-monotonous sign in IEC depending upon the width of the Platinum spacer layer. The calculated magnetoresistance from Julliere's model also exhibit similar switching behavior as that of IEC. The universality of the behavior of exchange coupling has also been looked into by introducing different non-magnetic spacers like Palladium, Copper, Silver, and Gold in between magnetic Iron layers. The nature of hybridization between Fe and other non-magnetic spacer is found to dictate the inter layer magnetic interaction. For example, in Fe/Pd nanowire the d-p hybridization in two spacer layer case favors anti-ferromagnetic (AFM) configuration over ferromagnetic (FM) configuration. However, the hybridization between half-filled Fe(d) and filled Cu(p) state in Fe/Cu nanowire favors FM coupling in the 2-spacer system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND The numbers of people attending emergency departments (EDs) at hospitals are increasing. We aimed to analyse trends in ED attendance at a Swiss university hospital between 2002 and 2012, focussing on age-related differences and hospital admission criteria. METHODS We used hospital administrative data for all patients aged ≥16 years who attended the ED (n=298,306) at this university hospital between 1 January 2002, and 31 December 2012. We descriptively analysed the numbers of ED visits according to the admission year and stratified by age (≥65 vs <65 years). RESULTS People attending the ED were on average 46.6 years old (standard deviation 20 years, maximum range 16‒99 years). The annual number of ED attendances grew by n=6,639 (27.6%) from 24,080 in 2002 to 30,719 in 2012. In the subgroup of patients aged ≥65 the relative increase was 42.3%, which is significantly higher (Pearson's χ2=350.046, df=10; p=0.000) than the relative increase of 23.4% among patients<65 years. The subgroup of patients≥65 years attended the ED more often because of diseases (n=56,307; 85%) than accidents (n=9,844; 14.9%). This subgroup (patients≥65 years) was also more often admitted to hospital (Pearson's χ2=23,377.190; df=1; p=0.000) than patients<65 years. CONCLUSIONS ED attendance of patients≥65 years increased in absolute and relative terms. The study findings suggest that staff of this ED may want to assess the needs of patients≥65 years and, if necessary, adjust the services (e.g., adapted triage scales, adapted geriatric screenings, and adapted hospital admission criteria).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Apoptosis is a normal physiological cell suicide process which is essential for tissue homeostasis and normal development of metazoans. Misregulation of apoptosis is associated with many developmental defects and human diseases. The genes involved in the regulation and execution of apoptosis are highly conserved in humans and flies. Caspases are the executioners of cell suicide. Because of the unavailability of specific fly mutants, the developmental function of many caspase genes and genetic relationship between caspases and apoptotic components were undefined in Drosophila. We isolated several mutant alleles of the initiator caspase gene dronc, the effector casase drICE, and the Mediator component Cyclin C from the GMR-hid eyFLP/FRT screens which is designed to isolate mutants of recessive cell death genes in Drosophila melanogaster. Characterization of these mutants defined that they are essential for developmental cell death in Drosophila. dronc is required for most, but not all, cell death in Drosophila. drICE is required for apoptosis in many cells and it shares redundancy with another effector caspase gene, dcp-1, in a subset of cells in Drosophila. The genetic relationship between caspases and other apoptotic components was established through mutant analysis. We found that the pro-apoptotic protein Hid induces transcription of the initiator caspase gene dronc and the GMR-induced dronc transcripts are dependent on activated effector casapses, revealing a novel regulatory mechanism to promote caspase activity in Drosophila. Cyclin C and its kinase partner Cdk8 are required for prompt transcriptional induction of dronc in cell killing contexts. In short, we define the essential pro-apoptoic function of dronc, drICE, and Cyclin C in Drosophila and reveal a novel mechanism for regulation of dronc transcription. In the long run, these studies will help us decipher the complicated regulatory mechanism of cell death in humans. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Emission inventories are databases that aim to describe the polluting activities that occur across a certain geographic domain. According to the spatial scale, the availability of information will vary as well as the applied assumptions, which will strongly influence its quality, accuracy and representativeness. This study compared and contrasted two emission inventories describing the Greater Madrid Region (GMR) under an air quality simulation approach. The chosen inventories were the National Emissions Inventory (NEI) and the Regional Emissions Inventory of the Greater Madrid Region (REI). Both of them were used to feed air quality simulations with the CMAQ modelling system, and the results were compared with observations from the air quality monitoring network in the modelled domain. Through the application of statistical tools, the analysis of emissions at cell level and cell – expansion procedures, it was observed that the National Inventory showed better results for describing on – road traffic activities and agriculture, SNAP07 and SNAP10. The accurate description of activities, the good characterization of the vehicle fleet and the correct use of traffic emission factors were the main causes of such a good correlation. On the other hand, the Regional Inventory showed better descriptions for non – industrial combustion (SNAP02) and industrial activities (SNAP03). It incorporated realistic emission factors, a reasonable fuel mix and it drew upon local information sources to describe these activities, while NEI relied on surrogation and national datasets which leaded to a poorer representation. Off – road transportation (SNAP08) was similarly described by both inventories, while the rest of the SNAP activities showed a marginal contribution to the overall emissions.