990 resultados para GLYCOPROTEIN-D


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Herzwirksame Glykoside sind in der Natur sowohl im Tier- als auch im Pflanzenreich zu finden und werden regelmäßig zur Therpaie von Herzinsuffizienz eingesetzt. In letzter Zeit belegten viele Studien, dass herzwirksame Glykoside vielversprechende Substanzen für die Behandlung von Krebs darstellen. Ihr Wirkmechanismus basiert auf der Hemmung der Na+/K+-ATPase. Die Na+/K+-ATPase spielt neuerdings eine wichtige Rolle in der Krebsbiologie, da sie viele relevante Signalwege beeinflusst. Multiresistenzen gegen Arzneimittel sind oftmals verantwortlich für das Scheitern einer Chemotherapie. Bei multi-drug-resistenten Tumoren erfolgt ein Transport der Chemotherapeutika aus der Krebszelle hinaus durch das Membranprotein P-Glykoprotein. In der vorliegenden Arbeit wurde die Zytotoxizität von 66 herzwirksamen Glykosiden und ihren Derivaten in sensitiven und resistenten Leukämie-Zellen getestet. Die Ergebnisse zeigen, dass diese Naturstoffe die Zell-Linien in verschiedenen molaren Bereichen abtöten. Allerdings waren die Resistenz-Indizes niedrig (d. h. die IC50 Werte waren in beiden Zell-Linien ähnlich). Die untersuchten 66 Substanzen besitzen eine große Vielfalt an chemischen Substituenten. Die Wirkung dieser Substituenten auf die Zytotoxizität wurde daher durch Struktur-Aktivitäts-Beziehung (SAR) erforscht. Des Weiteren wiesen quantitative Struktur-Aktivitäts-Beziehung (QSAR) und molekulares Docking darauf hin, dass die Na+/K+-ATPase in sensitiven und resistenten Zellen unterschiedlich stark exprimiert wird. Eine Herunterregulation der Na+/K+-ATPase in multi-drug-resistenten Zellen wurde durch Western Blot bestätigt und die Wirkung dieser auf relevante Signalwege durch Next-Generation-Sequenzierung weiter verfolgt. Dadurch konnte eine Verbindung zwischen der Überexpression von P-Glykoprotein und der Herunterregulation der Na+/K+-ATPase hergestellt werden. Der zweite Aspekt der Arbeit war die Hemmung von P-Glykoprotein durch herzwirksame Glykoside, welche durch Hochdurchsatz-Durchflusszytometrie getestet wurde. Sechs wirksame Glykoside konnten den P-Glykoprotein-vermittelten Transport von Doxorubicin inhibieren. Zudem konnte die Zytotoxität von Doxorubicin in multi-drug-resistenten Zellen teilweise wieder zurück erlangt werden. Unabhängig von herzwirksamen Glykosiden war die Bewertung der Anwendung von molekularem Docking in der P-Glykoprotein Forschung ein weiterer Aspekt der Arbeit. Es ließ sich schlussfolgern, dass molekulares Docking fähig ist, zwischen den verschiedenen Molekülen zu unterscheiden, die mit P-Glykoprotein interagieren. Die Anwendbarkeit von molekularem Docking in Bezug auf die Bestimmung der Bindestelle einer Substanz wurde ebenfalls untersucht.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The envelope glycoprotein of small ruminant lentiviruses (SRLV) is a major target of the humoral immune response and contains several linear B-cell epitopes. We amplified and sequenced the genomic segment encoding the SU5 antigenic site of the envelope glycoprotein of several SRLV field isolates. With synthetic peptides based on the deduced amino acid sequences of SU5 in an enzyme-linked immunosorbent assay (ELISA), we have (i) proved the immunodominance of this region regardless of its high variability, (ii) defined the epitopes encompassed by SU5, (iii) illustrated the rapid and peculiar kinetics of seroconversion to this antigenic site, and (iv) shown the rapid and strong maturation of the avidity of the anti-SU5 antibody. Finally, we demonstrated the modular diagnostic potential of SU5 peptides. Under Swiss field conditions, the SU5 ELISA was shown to detect the majority of infected animals and, when applied in a molecular epidemiological context, to permit rapid phylogenetic classification of the infecting virus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Latex glycoprotein (LGP) from Synadenium grantii latex was purified by the combination of heat precipitation and gel permeation chromatography. LGP is a heat stable protein even at 80 degrees C showed a sharp single band both in SDS-PAGE as well as in native (acidic) PAGE. LGP is a monomeric protein appears as single band under reducing condition. It is a less hydrophobic protein showed sharp single peak in RP-HPLC with retention time of 13.3 m. The relative molecular mass of LGP is 34.4 kDa. CD spectrum of LGP explains less content of alpha-helix (7%), and high content of beta-pleated sheets (48%) and random coils (46%). The N-terminal sequence of LGP is D-F-P-S-D-W-Y-A-Y-E-G-Y-V-I-D-R-P-F-S. Purified LGP is a fibrinogen degrading protease hydrolyses all the three subunits in the order of Aalpha, Bbeta and gamma. The hydrolytic pattern is totally different from plasmin as well as thrombin. LGP reduces recalcification time from 165 to 30 s with citrated human plasma but did not show thrombin like as well as factor Xa-like activity. Although LGP induces procoagulant activity, it hydrolyses partially cross-linked fibrin clot. It hydrolyses all the subunits of partially cross-linked fibrin clot (alpha- chains, beta-chain and gamma-gamma dimer). LGP is a serine protease, inhibited by PMSF. Other serine protease inhibitors, aprotinin and leupeptin did not inhibit the caseinolytic activity as well as fibrinogenolytic activity. We report purification and characterization of a glycoprotein from Synadenium grantii latex with human fibrino(geno)lytic activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acute thrombotic arterial occlusion is the leading cause of morbidity and mortality in the Western world. Von Willebrand factor is thought to be the only indispensable adhesive substrate to promote thrombus formation in high shear environments. We found that thrombospondin-1, a glycoprotein enriched in arteriosclerotic plaques, might function as an alternative substrate for thrombus formation. Platelets adhered to thrombospondin-1 in a shear dependent manner with an optimum shear as found in stenosed arteries. Adhesion is extremely firm, with no detachment of platelets up to a shear rate of 4000 s(-1). Experiments using platelets from a patient completely lacking von Willebrand factor showed that von Willebrand factor is not involved in platelet binding to thrombospondin-1. Platelet adhesion to thrombospondin-1 is not mediated via beta3-integrins or GPIa. CD36 partially mediates the adhesion of pre-activated platelets. We identified GPIb as high shear adhesion-receptor for thrombospondin-1. Soluble GPIb, as well as antibodies against the GPIb, blocked platelet adhesion almost completely. The new discovered thrombospondin-1-GPIb adhesion axis under arterial shear conditions might be important, not only during thrombus formation but also for pathological processes where other cells bind to the endothelium or subendothelium, including arteriosclerosis, inflammation and tumor metastasis, and a promising therapeutic target.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simple collagen-related peptides (CRPs) containing a repeat Gly-Pro-Hyp sequence are highly potent platelet agonists. Like collagen, they must exhibit tertiary (triple-helical) and quaternary (polymeric) structure to activate platelets. Platelet signaling events induced by the peptides are the same as most of those induced by collagen. The peptides do not recognize the alpha 2 beta 1 integrin. To identify the signaling receptor involved, we have evaluated the response to the CRP, Gly-Lys-Hyp(Gly-Pro-Hyp)10-Gly-Lys-Hyp-Gly of platelets with defined functional deficiencies. These studies exclude a primary recognition role for CD36, von Willebrand factor (vWF), or glycoprotein (GP) IIb/IIIa. Thus, both CD36 and vWF-deficient platelets exhibited normal aggregation, normal fibrinogen binding, and normal expression of CD62 and CD63, measured by flow cytometry, in response to the peptide, and there was normal expression of CD62 and CD63 on thrombasthenic platelets. In contrast, GPVI-deficient platelets were totally unresponsive to the peptide, indicating that this receptor recognizes the Gly-Pro-Hyp sequence in collagen. GPVI-deficient platelets showed some fibrinogen binding in response to collagen but failed to aggregate and to express CD62 and CD63. Collagen, but not CRP-XL, contains binding sites for alpha 2 beta 1. Therefore, it is possible that collagen still induces some signaling via alpha 2 beta 1, leading to activation of GPIIb/IIIa. Our findings are consistent with a two-site, two-step model of collagen interaction with platelets involving recognition of specific sequences in collagen by an adhesive receptor such as alpha 2 beta 1 to arrest platelets under flow and subsequent recognition of another specific collagen sequence by an activatory receptor, namely GPVI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The snake venom C-type lectin alboaggregin A (or 50-kd alboaggregin) from Trimeresurus albolabris was previously shown to be a platelet glycoprotein (GP) Ib agonist. However, investigations of the signal transduction induced in platelets showed patterns of tyrosine phosphorylation that were different from those of other GPIb agonists and suggested the presence of an additional receptor. In this study, the binding of biotinylated alboaggregin A to platelet lysates, as well as affinity chromatography evaluations of platelet lysates on an alboaggregin A-coated column, indicated that this other receptor is GPVI. Additional experiments with reagents that inhibit either GPIb or GPVI specifically supported this finding. These experiments also showed that both GPIb and GPVI have a role in the combined signaling and that the overall direction this takes can be influenced by inhibitors of one or the other receptor pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbohydrate-deficient glycoprotein syndrome (CDGS) represents a class of genetic diseases characterized by abnormal N-linked glycosylation. CDGS patients show a large number of glycoprotein abnormalities resulting in dysmorphy, encephalopathy, and other organ disorders. The majority of CDGSs described to date are related to an impaired biosynthesis of dolichyl pyrophosphate-linked Glc3Man9GlcNAc2 in the endoplasmic reticulum. Recently, we identified in four related patients a novel type of CDGS characterized by an accumulation of dolichyl pyrophosphate-linked Man9GlcNAc2. Elaborating on the analogy of this finding with the phenotype of alg5 and alg6 Saccharomyces cerevisiae strains, we have cloned and analyzed the human orthologs to the ALG5 dolichyl phosphate glucosyltransferase and ALG6 dolichyl pyrophosphate Man9GlcNAc2 alpha1,3-glucosyltransferase in four novel CDGS patients. Although ALG5 was not altered in the patients, a C-->T transition was detected in ALG6 cDNA of all four CDGS patients. The mutation cosegregated with the disease in a Mendelian recessive manner. Expression of the human ALG5 and ALG6 cDNA could partially complement the respective S. cerevisiae alg5 and alg6 deficiency. By contrast, the mutant ALG6 cDNA of CDGS patients failed to revert the hypoglycosylation observed in alg6 yeasts, thereby proving a functional relationship between the alanine to valine substitution introduced by the C-->T transition and the CDGS phenotype. The mutation in the ALG6 alpha1,3-glucosyltransferase gene defines an additional type of CDGS, which we propose to refer to as CDGS type-Ic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mature dolichol-linked oligosaccharides (mDLOs) needed for eukaryotic protein N-glycosylation are synthesized by a multistep pathway in which the biosynthetic lipid intermediate Man5GlcNAc2-PP-dolichol (M5-DLO) flips from the cytoplasmic to the luminal face of the endoplasmic reticulum. The endoplasmic reticulum membrane protein Rft1 is intimately involved in mDLO biosynthesis. Yeast genetic analyses implicated Rft1 as the M5-DLO flippase, but because biochemical tests challenged this assignment, the function of Rft1 remains obscure. To understand the role of Rft1, we sought to analyze mDLO biosynthesis in vivo in the complete absence of the protein. Rft1 is essential for yeast viability, and no Rft1-null organisms are currently available. Here, we exploited Trypanosoma brucei (Tb), an early diverging eukaryote whose Rft1 homologue functions in yeast. We report that TbRft1-null procyclic trypanosomes grow nearly normally. They have normal steady-state levels of mDLO and significant N-glycosylation, indicating robust M5-DLO flippase activity. Remarkably, the mutant cells have 30-100-fold greater steady-state levels of M5-DLO than wild-type cells. All N-glycans in the TbRft1-null cells originate from mDLO indicating that the M5-DLO excess is not available for glycosylation. These results suggest that rather than facilitating M5-DLO flipping, Rft1 facilitates conversion of M5-DLO to mDLO by another mechanism, possibly by acting as an M5-DLO chaperone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Circulating autoantibodies to phospholipids (aPLs), such as cardiolipin (CL), are found in patients with antiphospholipid antibody syndrome (APS). We recently demonstrated that many aPLs bound to CL only after it had been oxidized (OxCL), but not to a reduced CL analogue that could not undergo oxidation. We now show that the neoepitopes recognized by some aPLs consist of adducts formed between breakdown products of oxidized phospholipid and associated proteins, such as β2 glycoprotein 1 (β2GP1). Addition of human β2GP1, polylysine, native low-density lipoprotein, or apolipoprotein AI to OxCL-coated wells increased the anticardiolipin antibody (aCL) binding from APS sera that first had been diluted so that no aCL binding to OxCL could be detected. No increase in aCL binding was observed when these proteins were added to wells coated with reduced CL. The ability of β2GP1, polylysine, or low-density lipoprotein to be a “cofactor” for aCL binding to OxCL was greatly reduced when the proteins were methylated. Incubation of β2GP1 with oxidized 1-palmitoyl-2-linoleyl-[1-14C]-phosphatidylcholine (PC), but not with dipalmitoyl-[1-14C]-PC, led to formation of covalent adducts with β2GP1 recognized by APS sera. These data suggest that the reactive groups of OxCL, such as aldehydes generated during the decomposition of oxidized polyunsaturated fatty acids, form covalent adducts with β2GP1 (and other proteins) and that these are epitopes for aCLs. Knowledge that the epitopes recognized by many aPLs are adducts of oxidized phospholipid and associated proteins, including β2GP1, may give new insights into the pathogenic events underlying the clinical manifestations of APS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Selectins are adhesion molecules that initiate tethering and rolling of leukocytes on the vessel wall. Rolling requires rapid formation and breakage of selectin–ligand bonds that must have mechanical strength to resist premature dissociation by the forces applied in shear flow. P- and L-selectin bind to the N-terminal region of P-selectin glycoprotein ligand-1 (PSGL-1), a mucin on leukocytes. To define determinants on PSGL-1 that contribute to the kinetic and mechanical properties of bonds with selectins, we compared rolling of transfected preB cells expressing P- or L-selectin on transfected cell monolayers expressing wild-type PSGL-1 or PSGL-1 constructs with substitutions in targeted N-terminal residues. Rolling through P- or L-selectin required a Thr or Ser at a specific position on PSGL-1, the attachment site for an essential O-glycan, but required only one of three nearby Tyr residues, which are sites for Tyr-SO3 formation. The adhesive strengths and numbers of cells rolling through P- or L-selectin were similar on wild-type PSGL-1 and on each of the three PSGL-1 constructs containing only a single Tyr. However, the cells rolled more irregularly on the single-Tyr forms of PSGL-1. Analysis of the lifetimes of transient tethers on limiting densities of PSGL-1 revealed that L-selectin dissociated faster from single-Tyr than wild-type PSGL-1 at all shears examined. In sharp contrast, P-selectin dissociated faster from single-Tyr than wild-type PSGL-1 at higher shear but not at lower shear. Thus, tyrosine replacements in PSGL-1 affect distinct kinetic and mechanical properties of bonds with P- and L-selectin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The MDR1 P-glycoprotein (Pgp), a member of the ATP-binding cassette family of transporters, is a transmembrane ATPase efflux pump for various lipophilic compounds, including many anti-cancer drugs. mAb UIC2, reactive with the extracellular moiety of Pgp, inhibits Pgp-mediated efflux. UIC2 reactivity with Pgp was increased by the addition of several Pgp-transported compounds or ATP-depleting agents, and by mutational inactivation of both nucleotide-binding domains (NBDs) of Pgp. UIC2 binding to Pgp mutated in both NBDs was unaffected in the presence of Pgp transport substrates or in ATP-depleted cells, whereas the reactivities of the wild-type Pgp and Pgps mutated in a single NBD were increased by these treatments to the level of the double mutant. These results indicate the existence of different Pgp conformations associated with different stages of transport-associated ATP hydrolysis and suggest trapping in a transient conformation as a mechanism for antibody-mediated inhibition of Pgp.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By using perfusions and bolus administration, coupled with postembedding immunocytochemical procedures, we have identified the structures involved in the transport of derivatized orosomucoid (α1-acidic glycoprotein) across the continuous microvascular endothelium of the murine myocardium. Our findings indicate that: (i) monomeric orosomucoid binds to the luminal surface of the endothelium; (ii) it is restricted to caveolae during its transport across the endothelium; (iii) it is detected in the perivascular spaces at early time points (by 1 min) and in larger quantities at later time points (>5 min) from the beginning of its perfusion or its intravascular administration; (iv) no orosomucoid molecules are found in the intercellular junctions or at the abluminal exits of interendothelial spaces; and (v) the vesicular transport of orosomucoid is strongly inhibited by N-ethylmaleimide (>80%). Because, by size and shape, the orosomucoid qualifies as a preferential probe for the postulated small pore system, our results are discussed in relation to the pore theory of capillary permeability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mutations in the sister of P-glycoprotein (Spgp) or bile salt export pump (BSEP) are associated with Progressive Familial Intrahepatic Cholestasis (PFIC2). Spgp is predominantly expressed in the canalicular membranes of liver. Consistent with in vitro evidence demonstrating the involvement of Spgp in bile salt transport, PFIC2 patients secrete less than 1% of biliary bile salts compared with normal infants. The disease rapidly progresses to hepatic failure requiring liver transplantation before adolescence. In this study, we show that the knockout of spgp gene in mice results in intrahepatic cholestasis, but with significantly less severity than PFIC2 in humans. Some unexpected characteristics are observed. Notably, although the secretion of cholic acid in mutant mice is greatly reduced (6% of wild-type), total bile salt output in mutant mice is about 30% of wild-type. Also, secretion of an unexpectedly large amount of tetra-hydroxylated bile acids (not detected in wild-type) is observed. These results suggest that hydroxylation and an alternative canalicular transport mechanism for bile acids compensate for the absence of Spgp function and protect the mutant mice from severe cholestatic damage. In addition, the spgp−/− mice display a significant increase in the secretion of cholesterol and phospholipids into the bile. This latter observation in spgp−/− mice suggests that intrahepatic, rather than intracanalicular, bile salts are the major driving force for the biliary lipid secretion. The spgp−/− mice thus provide a unique model for gaining new insights into therapeutic intervention for intrahepatic cholestasis and understanding mechanisms associated with lipid homeostasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spectrum of immunogenic epitopes presented by the H2-IAb MHC class II molecule to CD4+ T cells has been defined for two different (clade B and clade D) HIV envelope (gp140) glycoproteins. Hybridoma T cell lines were generated from mice immunized by a sequential prime and boost regime with DNA, recombinant vaccinia viruses, and protein. The epitopes recognized by reactive T cell hybridomas then were characterized with overlapping peptides synthesized to span the entire gp140 sequence. Evidence of clonality also was assessed with antibodies to T cell receptor Vα and Vβ chains. A total of 80 unique clonotypes were characterized from six individual mice. Immunogenic peptides were identified within only four regions of the HIV envelope. These epitope hotspots comprised relatively short sequences (≈20–80 aa in length) that were generally bordered by regions of heavy glycosylation. Analysis in the context of the gp120 crystal structure showed a pattern of uniform distribution to exposed, nonhelical strands of the protein. A likely explanation is that the physical location of the peptide within the native protein leads to differential antigen processing and consequent epitope selection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Both serine/threonine and tyrosine phosphorylation of receptor proteins have been implicated in the process of long-term potentiation (LTP), but there has been no direct demonstration of a change in receptor phosphorylation after LTP induction. We show that, after induction of LTP in the dentate gyrus of anesthetized adult rats, there is an increase in the tyrosine phosphorylation of the 2B subunit of the N-methyl-D-aspartate (NMDA) receptor (NR2B), as well as several other unidentified proteins. Tyrosine phosphorylation of NR2B was measured in two ways: binding of antiphosphotyrosine antibodies (PY20) to glycoprotein(s) of 180 kDa (GP180) purified on Con A-Sepharose and binding of anti-NR2B antibodies to tyrosine-phosphorylated proteins purified on PY20-agarose. Three hours after LTP induction, anti-NR2B binding to tyrosine phosphorylated proteins, expressed as a ratio of tetanized to control dentate (Tet/Con), was 2.21 +/- 0.50 and PY20 binding to GP180 was 1.68 +/- 0.16. This increase in the number of tyrosine phosphorylated NR2B subunits occurred without a change in the total number of NR2B subunits. When the induction of LTP was blocked by pretreatment of the animal with the NMDA receptor antagonist MK801, the increase in PY20 binding to GP180 was also blocked (Tet/Con = 1.09 +/- 0.26). The increased PY20 binding to GP180 was also apparent 15 min after LTP induction (Tet/Con = 1.41 +/- 0.16) but not detectable 5 min after LTP induction (Tet/Con = 1.01 +/- 0.19). These results suggest that tyrosine phosphorylation of the NMDA receptor contributes to the maintenance of LTP.