972 resultados para GLOBULAR CLUSTERS: INDIVIDUAL (KRONBERGER 49)
Resumo:
Observers have found a small number of lithium-depleted halo stars in the temperature range of the Spite plateau. The current status of the mass-loss hypothesis for producing the observed lithium dip in Population (Pop) I stars is briefly discussed and extended to Pop II stars as a possible explanation for these halo objects. Based on detections of F-type main-sequence variables, mass loss is assumed to occur in a narrow temperature region corresponding to this “instability strip.” As Pop II main-sequence stars evolve to the blue, they enter this narrow temperature region, then move back through the lower temperature area of the Spite plateau. If 0.05 M⊙ (solar mass) or more have been lost, they will show lithium depletion. This hypothesis affects the lithium-to- beryllium abundance, the ratio of high- to low-lithium stars, and the luminosity function. Constraints on the mass-loss hypothesis due to these effects are discussed. Finally, mass loss in this temperature range would operate in stars near the turnoff of metal-poor globular clusters, resulting in apparent ages 2 to 3 Gyr (gigayears) older than they actually are.
Resumo:
An overview is presented of the current situation regarding radioactive dating of the matter of which our Galaxy is comprised. A firm lower bound on the age from nuclear chronometers of ≈9–10 Gyr is entirely consistent with age determinations from globular clusters and white dwarf cooling histories. The reasonable assumption of an approximately uniform nucleosynthesis rate yields an age for the Galaxy of 12.8 ± 3 Gyr, which again is consistent with current determinations from other methods.
Resumo:
We have discovered a new type of galaxy in the Fornax Cluster: 'ultra-compact' dwarfs (UCDs). The UCDs are unresolved in ground-based imaging and have spectra typical of old stellar systems. Although the UCDs resemble overgrown globular clusters, based on VLT UVES echelle spectroscopy, they appear to be dynamically distinct systems with higher internal velocity dispersions and M/L ratios for a given luminosity than Milky Way or M31 globulars. Our preferred explanation for their origin is that they are the remnant nuclei of dwarf elliptical galaxies which have been tidally stripped, or 'threshed' by repeated encounters with the central cluster galaxy, NGC1399. If correct, then tidal stripping of nucleated dwarfs to form UCDs may, over a Hubble time, be an important source of the plentiful globular cluster population in the halo of NGC1399, and, by implication, other cD galaxies. In this picture, the dwarf elliptical halo contents, up to 99% of the original dwarf luminosity, contribute a significant fraction of the populations of intergalactic stars, globulars, and gas in galaxy clusters.
Resumo:
We present results from a pilot study of a new wide-field, multicolour (BVR) CCD imaging project, designed to examine galaxy evolution along large-scale filaments that connect clusters of galaxies at intermediate redshifts (0.07 < z < 0.20). Our pilot data set is based on 0.56 deg(2) of observations targeted on Abell 1079 and Abell 1084 using the Wide Field Imager on the Anglo-Australian Telescope. We describe our data reduction pipeline and show that our photometric error is 0.04 mag. By selecting galaxies that lie on the colour-magnitude relation of the two clusters we verify the existence of a low-density (similar to3-4 Mpc(-2)) filament population, conjoining them at a distance of > 3r(Abell) from either cluster. By applying a simple field correction, we characterize this filament population by examining their colour distribution on a (V-R)-(B-V) plane. We confirm the galaxian filament detection at a 7.5 sigma level using a cut at M-V = -18 and we discuss their broad properties.
Resumo:
Recently, very massive compact stellar systems have been discovered in the intracluster regions of galaxy clusters and in the nuclear regions of late-type disk galaxies. It is unclear how these compact stellar systems - known as ultracompact dwarf (UCD) galaxies or nuclear clusters (NCs) - form and evolve. By adopting a formation scenario in which these stellar systems are the product of multiple merging of star clusters in the central regions of galaxies, we investigate, numerically, their physical properties. We find that physical correlations among velocity dispersion, luminosity, effective radius, and average surface brightness in the stellar merger remnants are quite different from those observed in globular clusters. We also find that the remnants have triaxial shapes with or without figure rotation, and these shapes and their kinematics depend strongly on the initial number and distribution of the progenitor clusters. These specific predictions can be compared with the corresponding results of ongoing and future observations of UCDs and NCs, thereby providing a better understanding of the origin of these enigmatic objects.
Resumo:
Using imaging from the Hubble Space Telescope, we derive surface brightness profiles for ultracompact dwarfs in the Fornax Cluster and for the nuclei of dwarf elliptical galaxies in the Virgo Cluster. Ultracompact dwarfs are more extended and have higher surface brightnesses than typical dwarf nuclei, while the luminosities, colors, and sizes of the nuclei are closer to those of Galactic globular clusters. This calls into question the production of ultracompact dwarfs via threshing, whereby the lower surface brightness envelope of a dwarf elliptical galaxy is removed by tidal processes, leaving behind a bare nucleus. Threshing may still be a viable model if the relatively bright Fornax ultracompact dwarfs considered here are descended from dwarf elliptical galaxies whose nuclei are at the upper end of their luminosity and size distributions.
Resumo:
We report on the discovery of a large-scale wall in the direction of Abell 22. Using photometric and spectroscopic data from the Las Campanas Observatory and Anglo-Australian Telescope Rich Cluster Survey, Abell 22 is found to exhibit a highly unusual and striking redshift distribution. We show, by examining the galaxy distributions both in redshift space and on the colour-magnitude plane, that Abell 22 exhibits a foreground wall-like structure. A search for other galaxies and clusters in the nearby region using the 2dF Galaxy Redshift Survey data base suggests that the wall-like structure is a significant large-scale, non-virialized filament which runs between two other Abell clusters either side of Abell 22. The filament stretches over at least > 40 h(-1) Mpc in length and 10 h(-1) Mpc in width at the redshift of Abell 22.
Resumo:
We have discovered nine ultracompact dwarf galaxies (UCDs) in the Virgo Cluster, extending samples of these objects outside the Fornax Cluster. Using the Two Degree Field (2dF) multifiber spectrograph on the Anglo-Australian Telescope, the new Virgo members were found among 1500 color-selected, starlike targets with 16: 0 < b(j) < 20.2 in a 2 degrees diameter field centered on M87 (NGC 4486). The newly found UCDs are comparable to the UCDs in the Fornax Cluster, with sizes less than or similar to 100 pc, -12.9 < M-B < -10.7, and exhibiting red absorption-line spectra, indicative of an older stellar population. The properties of these objects remain consistent with the tidal threshing model for the origin of UCDs from the surviving nuclei of nucleated dwarf elliptical galaxies disrupted in the cluster core but can also be explained as objects that were formed by mergers of star clusters created in galaxy interactions. The discovery that UCDs exist in Virgo shows that this galaxy type is probably a ubiquitous phenomenon in clusters of galaxies; coupled with their possible origin by tidal threshing, the UCD population is a potential indicator and probe of the formation history of a given cluster. We also describe one additional bright UCD with M-B = -12.0 in the core of the Fornax Cluster. We find no further UCDs in our Fornax Cluster Spectroscopic Survey down to bj 19.5 in two additional 2dF fields extending as far as 3 degrees from the center of the cluster. All six Fornax bright UCDs identified with 2dF lie within 0.degrees 5 (projected distance of 170 kpc) of the central elliptical galaxy NGC 1399.
Structure and dynamics of the Shapley Supercluster - Velocity catalogue, general morphology and mass
Resumo:
We present results of our wide-field redshift survey of galaxies in a 285 square degree region of the Shapley Supercluster (SSC), based on a set of 10 529 velocity measurements (including 1201 new ones) on 8632 galaxies obtained from various telescopes and from the literature. Our data reveal that the main plane of the SSC (v approximate to 14 500 km s(-1)) extends further than previous estimates, filling the whole extent of our survey region of 12 degrees by 30 degrees on the sky (30 x 75 h(-1) Mpc). There is also a connecting structure associated with the slightly nearer Abell 3571 cluster complex (v approximate to 12 000 km s(-1)). These galaxies seem to link two previously identified sheets of galaxies and establish a connection with a third one at v = 15 000 km s(-1) near RA = 13(h). They also tend to fill the gap of galaxies between the foreground Hydra-Centaurus region and the more distant SSC. In the velocity range of the Shapley Supercluster (9000 km s(-1) < cz < 18 000 km s(-1)), we found redshift-space overdensities with b(j) < 17.5 of similar or equal to 5.4 over the 225 square degree central region and similar or equal to 3.8 in a 192 square degree region excluding rich clusters. Over the large region of our survey, we find that the intercluster galaxies make up 48 per cent of the observed galaxies in the SSC region and, accounting for the different completeness, may contribute nearly twice as much mass as the cluster galaxies. In this paper, we discuss the completeness of the velocity catalogue, the morphology of the supercluster, the global overdensity, and some properties of the individual galaxy clusters in the Supercluster.
Resumo:
We present a catalogue of galaxies in Abell 3653 from observations made with the 2-degree field (2dF) spectrograph at the Anglo-Australian Telescope. Of the 391 objects observed, we find 111 are bona fide members of Abell 3653. We show that the cluster has a velocity of cz= 32 214 +/- 83 km s(-1) (z= 0.10 738 +/- 0.00 027), with a velocity dispersion typical of rich, massive clusters of sigma(cz)= 880(-54)(+66). We find that the cD galaxy has a peculiar velocity of 683 +/- 96 km s(-1) in the cluster rest frame - some 7 sigma away from the mean cluster velocity, making it one of the largest and most significant peculiar velocities found for a cD galaxy to date. We investigate the cluster for signs of substructure, but do not find any significant groupings on any length scale. We consider the implications of our findings on cD formation theories.
Resumo:
For the official publication, see: http://dx.doi.org/10.1016/j.lindif.2016.06.021
Resumo:
We hypothesize that at least some of the recently discovered class of calcium-rich gap transients are tidal detonation events of white dwarfs (WDs) by black holes (BHs) or possibly neutron stars. We show that the properties of the calcium-rich gap transients agree well with the predictions of the tidal detonation model. Under the predictions of this model, we use a follow-up X-ray observation of one of these transients, SN 2012hn, to place weak upper limits on the detonator mass of this system that include all intermediate-mass BHs (IMBHs). As these transients are preferentially in the stellar haloes of galaxies, we discuss the possibility that these transients are tidal detonations of WDs caused by random flyby encounters with IMBHs in dwarf galaxies or globular clusters. This possibility has been already suggested in the literature but without connection to the calcium-rich gap transients. In order for the random flyby cross-section to be high enough, these events would have to be occurring inside these dense stellar associations. However, there is a lack of evidence for IMBHs in these systems, and recent observations have ruled out all but the very faintest dwarf galaxies and globular clusters for a few of these transients. Another possibility is that these are tidal detonations caused by three-body interactions, where a WD is perturbed towards the detonator in isolated multiple star systems. We highlight a number of ways this could occur, even in lower mass systems with stellar-mass BHs or neutron stars. Finally, we outline several new observational tests of this scenario, which are feasible with current instrumentation.
Resumo:
Context: The initial distribution of spin rates of massive stars is a fingerprint of their elusive formation process. It also sets a key initial condition for stellar evolution and is thus an important ingredient in stellar population synthesis. So far, most studies have focused on single stars. Most O stars are, however, found in multiple systems.
Aims: By establishing the spin-rate distribution of a sizeable sample of O-type spectroscopic binaries and by comparing the distributions of binary subpopulations with one another and with that of presumed-single stars in the same region, we aim to constrain the initial spin distribution of O stars in binaries, and to identify signatures of the physical mechanisms that affect the evolution of the spin rates of massive stars.
Methods: We use ground-based optical spectroscopy obtained in the framework of the VLT-FLAMES Tarantula Survey (VFTS) to establish the projected equatorial rotational velocities (νesini) for components of 114 spectroscopic binaries in 30 Doradus. The νesini values are derived from the full width at half maximum (FWHM) of a set of spectral lines, using a FWHM vs. νesini calibration that we derive based on previous line analysis methods applied to single O-type stars in the VFTS sample.
Results: The overall νesini distribution of the primary stars resembles that of single O-type stars in the VFTS, featuring a low-velocity peak (at νesini<200 kms-1) and a shoulder at intermediate velocities (200 <νesini<300 kms-1). The distributions of binaries and single stars, however, differ in two ways. First, the main peak at νesini ~ 100kms-1 is broader and slightly shifted towards higher spin rates in the binary distribution than that of the presumed-single stars. This shift is mostly due to short-period binaries (Porb~<10 d). Second, the νesini distribution of primaries lacks a significant population of stars spinning faster than 300 kms-1, while such a population is clearly present in the single-star sample. The νesini distribution of binaries with amplitudes of radial velocity variation in the range of 20 to 200 kms-1 (mostly binaries with Porb ~ 10-1000 d and/or with q<0.5) is similar to that of single O stars below νesini~<170kms-1.
Conclusions: Our results are compatible with the assumption that binary components formed with the same spin distribution as single stars, and that this distribution contains few or no fast-spinning stars. The higher average spin rate of stars in short-period binaries may either be explained by spin-up through tides in such tight binary systems, or by spin-down of a fraction of the presumed-single stars and long-period binaries through magnetic braking (or by a combination of both mechanisms). Most primaries and secondaries of SB2 systems with Porb~<10 d appear to have similar rotational velocities. This is in agreement with tidal locking in close binaries where the components have similar radii. The lack of very rapidly spinning stars among binary systems supports the idea that most stars with νesini~> 300kms-1 in the single-star sample are actually spun-up post-binary interaction products. Finally, the overall similarities (low-velocity peak and intermediate-velocity shoulder) of the spin distribution of binary and single stars argue for a massive star formation process in which the initial spin is set independently of whether stars are formed as single stars or as components of a binary system.
Resumo:
Context. The 30 Doradus (30 Dor) region of the Large Magellanic Cloud, also known as the Tarantula nebula, is the nearest starburst region. It contains the richest population of massive stars in the Local Group, and it is thus the best possible laboratory to investigate open questions on the formation and evolution of massive stars. Aims. Using ground-based multi-object optical spectroscopy obtained in the framework of the VLT-FLAMES Tarantula Survey (VFTS), we aim to establish the (projected) rotational velocity distribution for a sample of 216 presumably single O-type stars in 30 Dor. The sample is large enough to obtain statistically significant information and to search for variations among subpopulations - in terms of spectral type, luminosity class, and spatial location - in the field of view. Methods. We measured projected rotational velocities, 3e sin i, by means of a Fourier transform method and a profile fitting method applied to a set of isolated spectral lines. We also used an iterative deconvolution procedure to infer the probability density, P(3e), of the equatorial rotational velocity, 3e. Results. The distribution of 3e sin i shows a two-component structure: a peak around 80 km s1 and a high-velocity tail extending up to 600 km s-1 This structure is also present in the inferred distribution P(3e) with around 80% of the sample having 0 <3e ≤ 300 km s-1 and the other 20% distributed in the high-velocity region. The presence of the low-velocity peak is consistent with what has been found in other studies for late O- and early B-type stars. Conclusions. Most of the stars in our sample rotate with a rate less than 20% of their break-up velocity. For the bulk of the sample, mass loss in a stellar wind and/or envelope expansion is not efficient enough to significantly spin down these stars within the first few Myr of evolution. If massive-star formation results in stars rotating at birth with a large portion of their break-up velocities, an alternative braking mechanism, possibly magnetic fields, is thus required to explain the present-day rotational properties of the O-type stars in 30 Dor. The presence of a sizeable population of fast rotators is compatible with recent population synthesis computations that investigate the influence of binary evolution on the rotation rate of massive stars. Even though we have excluded stars that show significant radial velocity variations, our sample may have remained contaminated by post-interaction binary products. That the highvelocity tail may be populated primarily (and perhaps exclusively) by post-binary interaction products has important implications for the evolutionary origin of systems that produce gamma-ray bursts. © 2013 Author(s).
Resumo:
Much of the literature on clusters has focused on the economic advantages of clusters and how these can be achieved in terms of competition, regional development and local spillovers. Some studies have focused at the level of the individual firm however human resource management (HRM) in individual clustered firms has received scant attention. This paper innovatively utilises the extended Resource Based View (RBV) of the firm as a framework to conceptualise the human resource processes of individual firms within a cluster. RBV is argued as a useful tool as it explains external rents outside a firm’s boundaries. The paper concludes that HRM can assist in generating rents for firms and clusters more broadly when the function supports valuable interfirm relationships important for realising inter-firm advantages.