967 resultados para GERCINO SHEAR ZONE
Resumo:
This paper reports on an experimental study on the ploughing or orthogonal cutting in sand. Plane strain cutting or ploughing experiments were carried out on model Ottawa sand while being imaged at high resolution. The images obtained were further processed using image analysis and the evolution of the velocity and deformation fields were obtained from these analysis. The deformation fields show the presence of a clear shear zone in which the sand accrues deformation. A net change in the direction of the velocity of the sand is also clearly visible. The effective depth of cut of the sand also increases with continuous cutting as the sand reposes on itself. This deformation mechanics at the incipient stages of cutting is similar to that observed in metal cutting.
Resumo:
The uniqThe unique lamellar chips formed in turning–machining of a Vit 1 bulk metallic glass (BMG) are found to be due to repeated shearband formation in the primary shear zone (PSZ). A coupled thermomechanical orthogonal cutting model, taking into account force, free volume and energy balance in the PSZ, is developed to quantitatively characterize lamellar chip formation. Its onset criterion is revealed through a linear perturbation analysis. Lamellar chip formation is understood as a self-sustained limit-cycle phenomenon: there is autonomous feedback in stress, free volume and temperature in the PSZ. The underlying mechanism is the symmetry breaking of free volume flow and source, rather than thermal instability. These results are fundamentally useful for machining BMGs and even for understanding the physical nature of inhomogeneous flow in BMGs.ue lamellar chips formed in turning–machining of a Vit 1 bulk metallic glass (BMG) are found to be due to repeated shearband.
Resumo:
A área estudada está inserida no Domínio Transversal da Província Borborema. As unidades litoestratigráficas que compõem o embasamento paleoproterozócio (riaciano) são representadas por rochas ortoderivadas dos Complexos Salgadinho e Cabaceiras. Esses complexos foram individualizados de acordo com as suas diferenças composicionais, texturais e/ou geocronológicas. As rochas metassedimentares de idade paleoproterozóica (Orosiriano) foram interpretadas como constituintes do Complexo Sertânia. O magmatismo no estateriano é caracterizado por ortognaisses sienogranítcos da Suíte Carnoió-Caturité e por metanortositos do Complexo Metanortosítico Boqueirão. As unidades litoestratigráficas do Neoproterozóico são representadas por sucessões metassedimentares Criogenianas do Complexo Surubim e ortognaisses granodioríticos e sienograníticos do início do Ediacarano, denominados de Complexo Sumé e Ortognaisse Riacho de Santo Antônio, respectivamente. O magmatismo granítico do Ediacarano foi caracterizado pelo alojamento dos Plutons Inácio Pereira e Marinho. Os dados geocronológicos (U-Pb em zircão) obtidos indicam, no mínimo, o desenvolvimento de três eventos tectono-magmáticos. As idades de 2042 + 11Ma e 1996 + 13Ma obtidas nos ortoanfibolitos do Complexo Cabaceiras foram interpretadas como a idade de cristalização do protólito e metamorfismo, respectivamente. A idade de 1638 + 13Ma proveniente de hornblenda ortognaisse sienogranítico da Suíte Carnoió-Caturité foi interpretada como a idade de cristalização do protólito, marcando um evento magmático Estateriano de afinidade anorogênica. A idade de 550 + 3.1Ma encontrada em monzogranito porfirítico do Pluton Marinho é um registro do último evento magmático no final do Ediacarano, associado ao estágio tardio de desenvolvimento da Zona de Cisalhamento Coxixola. Os dados estruturais permitiram a individualização de três fases de deformação dúcteis, individualizadas como D1, D2 e D3. A fase D1 foi responsável pela geração de uma foliação S1, observada somente na charneira de dobras F2. O evento D2 é assinalado por uma tectônica contracional com transporte para NNW, observado a partir de bandas de cisalhamento assimétricas e dobras de arrasto em cortes paralelos a lineação de estiramento (L2x). Zonas de cisalhamento dúcteis de geometria e cinemática distintas desenvolveram-se durante a fase D3. As zonas de Cisalhamento Boa Vista, Carnoió e Congo estão orientadas na direção NE-SW e exibem cinemática sinistral em cortes paralelos à lineação de estiramento (L3x). As terminações meridionais dessas zonas de cisalhamento estão conectadas com a Zona de Cisalhamento Coxixola. Essa zona de cisalhamento, de direção WSW-ENE e cinemática destral, atravessa toda a área de estudo, com uma espessura média de rochas miloníticas de 300m. A Zona de Cisalhamento Inácio Pereira ocorre na porção leste da área de estudo, orientada na direção WNW-ESE. A análise geométrica e cinemática dessa zona de cisalhamento sugere uma evolução deformacional através de regime transpressivo oblíquo sinistral. O padrão anastomosado final resultante do desenvolvimento de todas as zonas de cisalhamento da área é relacionado à evolução estrutural de um sistema de zonas de cisalhamento dúcteis conjugadas.
Resumo:
Apesar da grande quantidade de estudos geoquímicos e geocronológicos que têm sido executados no enxame de diques de Ponta Grossa (EDPG), pouco se sabe a respeito da tectônica associada ao seu sin e pós emplacement. O objetivo desse estudo é identificar nos diques possíveis indicadores cinemáticos a fim de compreender essa dinâmica, além de caracterizar a tectônica rúptil Meso-cenozóica associada à área, afetando todas as rochas. A área de estudo está situada no entorno da Baía de Paranaguá, estado do Paraná, onde os diques do EDPG afloram intrudindo domínios pré-cambrianos, compostos por gnaisses, sequências metassedimentares e suítes graníticas pertencentes ao Terreno Paranaguá e uma pequena parte às Microplacas Curitiba e Luís Alves, ambos em contato através de Zonas de cisalhamento (SIGA JR, 1995). Essas rochas possuem direção de foliação marcante NE-SW. Os diques estudados foram divididos em dois grupos com base em estudos petrográficos, com forte predomínio dos básicos toleíticos e subordinadamente, os básicos alcalinos. Alguns diques compostos também foram encontrados, o que demonstra ao menos dois pulsos magmáticos possivelmente associados ao mesmo evento. São diques verticais a subverticais e possuem direção principal NW-SE. Com frequência apresentam fraturamento interno de direção NE-SW, provavelmente associados ao seu processo de resfriamento. Possuem formato tabular, porém não é raro que ocorram irregulares. As principais feições indicativas de movimentação oblíqua na intrusão desses diques são as estruturas de borda em degraus, tocos e zigue-zague, que demonstram em geral uma componente distensional destral de deslocamento. Agregando dados dos demais enxames de diques toleíticos principais, chegou-se a um valor médio de N80E para o tensor σ3 da abertura do Atlântico Sul, coerente com o esperado também para EDPG, visto que foram intrudidos em um ambiente transtensivo (CORREA GOMES, 1996). Falhas e fraturas são observadas cortando tanto as rochas encaixantes quanto os diques, caracterizando uma tectônica posterior à intrusão. As principais famílias de fraturas são N20-30E, N30-40W, N80W e N60-70E, formando zonas preferenciais de erosão no cruzamento entre elas. As falhas podem apresentar plano de falha bem definido com estrias e ressaltos, ocorrendo preenchidas ou não, tendo sido observados preenchimento de sílica e material carbonático. Predomina nas falhas observadas, cinemática sinistral demonstrando mudança no campo de esforços com relação ao emplacement dos diques. O estudo da tectônica rúptil assim como do emplacement dos diques da área vem a contribuir para o melhor entendimento dos processos de abertura do Oceano Atlântico Sul, além de abranger a região emersa do que constitui o embasamento da bacia de Santos, foco de extensivos estudos atualmente, podendo-se inferir que os mesmos processos tenham afetado a região offshore.
Resumo:
Soil-rock mixture (S-RM) refers to one extremely uneven loose rock and soil materials system with certain stone content. Its formation has started since Quaternary and it is composed of block stone, fine grained soil and pore with certain project scale and high strength. S-RM has extensive distribution in nature, especially in southwest China where the geotectonic background is complicated, the fracture activity is developed and the geomorphological characteristics of high mountain and steep gorge area are protuberant. This kind of complicated geologic body has developed wider in these areas. S-RM has obvious difference with the general soil or rock (rock mass) in physical and mechanical properties because its two components-“soil” and “rock-block” has extreme differences in physical and mechanical properties. The proposition of S-RM and its deep research are needed in the modern engineering construction. It is also the necessity in the modern development of rock and soil mechanics. The dissertation starts from the meso-structural characteristics of soil-rock and takes a systematic research on its meso-structural mechanics, deformation and failure mechanism and the stability of S-RM slope. In summary, it achieves the following innovative results and conclusions. There are various views on the conception of S-RM and its classification system. Based on the large number of field tests, the dissertation makes the conception and classification of S-RM more systematic. It systematically proposed the conception of meso-structural mechanics of S-RM. Thus the dissertation has laid a foundation for its deep study. With the fast development of the computer technology and digital image processing theory, digital image processing technology has been successfully applied in many fields and provided reliable technology support for the quantitative description of the structural characteristics of S-RM. Based on the digital image processing technology, the dissertation systematically proposes and developed the quantitative analysis method and quantitative index for the meso-structure of S-RM. The results indicate that the meso-structure such as its internal soil-rock granularity composition, the soil-rock shape and the orientability has obvious self-organization in the macro statistical level. The dissertation makes a systematic research on the physical mechanical properties, deformation and failure mechanism of S-RM based on large field test. It proposes the field test for the underwater S-RM and deduces the 3D data analysis method of in-situ horizontal push-shear test. The result indicates that S-RM has significant phenomenon of shear dilatancy in the shearing process, and its dilatancy will be more obvious with the increased proportion of rock or the decreased confining pressure. The proportion of rock has great effect on the strength of S-RM and rock-block, especially the spatial position of particles with comparatively big size has great effect on the shape and spatial position of the sample shear zone. The dissertation makes some improvements in the single ring infiltration test equipment and its application on the permeability of S-RM. The results indicate that the increasing of rock-block would make it more difficult for the soil to fill in the vacuity between the rock-block and the proportion would increase which would result in the increased permeability coefficient. The dissertation builds the real meso-structural model of S-RM based on the digital image processing technology. By using geometric reconstruction technology, it transfers the structural mode represented by Binary image into CAD format, which makes it possible to introduce the present finite element analysis software to take research on numerical experimental investigation. It systematically realizes leaping research from the image,geometric mode, to meso-structural mechanics numerical experiment. By using this method, the dissertation takes large scale numerical direct-shear test on the section of S-RM. From the mesoscopic perspective, it reveals three extended modes about the shear failure plane of S-RM. Based on the real meso-structural model and by using the numerical simulation test, the character and mechanics of seepage failure of S-RM are studied. At the same time, it builds the real structural mode of the slope based on the analysis about the slope crosssection of S-RM. By using the strength reduction method, it takes the research on the stability of S-RM and gets great achievements. The three dimensional geometric reconstruction technology of rock block is proposed, which provides technical support for the reconstruction of the 3D meso-structural model of S-RM. For the first time, the dissertation builds the stochastic structure model of two-dimensional and three-dimensional polygons or polyhedron based on the stochastic simulation technique of monte carlo method. It breaks the traditional research which restricted to the random generation method of regular polygon and develops the relevant software system (R-SRM2D/3D) which has great effect on meso-structural mechanics of S-RM. Based on the R-SRM software system which randomly generates the meso-structural mode of S-RM according to the different meso-structural characteristics, the dissertation takes a series of research on numerical test of dual axis and real three-axis, systematically analyses the meso destroy system, the effects of meso-structural characteristics such as on the stone content, size composition and block directionality on the macro mechanical behavior and macro-permeability. Then it proposes the expression of the upper and lower limit for the macro-permeability coefficient of the inhomogeneous geomaterials, such as S-RM. By using the strength reduction FEM, the dissertation takes the research on the stability of the slope structural mode of the randomly formed S-RM. The results indicate that generally, the stability coefficient of S-RM slope increases with the increasing of stone content; on the condition of the same stone content, the stability coefficient of slope will be different with different size composition and the space position of large block at the internal slop has great effect on the stability. It suggests that meso-structural characteristics, especially the space position of large block should be considered when analyzing the stability of this kind of slope and strengthening design. Taking Xiazanri S-RM slope as an example, the dissertation proposes the fine modeling of complicated geologic body based on reverse engineering and the generation method of FLAC3D mode. It resolves the bottleneck problem about building the fine structural mode of three-dimensional geological body. By using FLAC3D, the dissertation takes research on the seepage field and the displacement field of Xiazanri S-RM slope in the process of reservoir water level rising and decreasing. By using strength reduction method, it analyses the three-dimension stability in the process of reservoir water level rising and decreasing. The results indicate that the slope stability firstly show downward trend in the process of reservoir water level rising and then rebound to increase; the sudden drawdown of reservoir water level has great effect on the slope stability and this effect will increase with the sudden drawdown amplitude rising. Based on the result of the rock block size analysis of S-RM, and using R-SRM2D the stochastic structure model of Xiazanri S-RM slope is built. By using strength reduction method, the stability of the stochastic structure model is analysis, the results shows that the stability factor increases significantly after considering the block.
Resumo:
Ju Nan of Shandong province is located at southwest of Sulu UHP (ultrahigh-pressure) metamorphic terrane. It is composed of gneiss, paragneiss, eclogites, ultramafic rocks, marble and quartzite. A large ductile shear zone extends east-west has been found at the Zhubian, The south of Junan county. The Zhubian ductile shear zone is composed of high srain rock and mylonites. The mylonites fall into 3 types: Initial gneiss mylonite, mylonite and altramylonit.obvious lineation of penetration,foliation,S-Cfabrics,porphyroclasts,folds,irregularundulatory,extinction,subgrain boundary, dynamic recrystallization microstructure, core-mantle structure and are common in the ductile shear zone. Based on field work and microstructural analyse, a conclution is arrived: The ductile shear zone is an approximately SE trending faults. The Zhubian ductile shear zone formed at Ep ―Hb facies conditions which could be proved by deformaed and metamorphosed mineral aggregates, Deformation behavior, Ternary-feldspar geothermometry and so on. Zircon MC―ICP―MS U-Pb analysis is performed on the mylonite and have an average age ―835.9±13.9Ma, it’s the primary rocks formed age. The Zhubian ductile shear zone maybe formed at 224-242Ma.
Resumo:
Since the discovery of coesite-bearing eclogites in Dabie and Sulu region over ten years ago, the Dabie collisional orogen has been the "hot-spot" across the world. While many great progresses have been made for the last decade in the researches on the Dabie and Sulu UHP metamorphic rocks in the following fields, such as, petrology, mineralogy, isotope chronology, and geochemistry, the study of the structural geology on the Dabie orogen is still in great need. Thrust and nappe tectonics commonly developed in any collisional orogenic belt during the syncollisional process of the orogen. It is the same as the Dabic collisional orogen is concerned. The paper put much stress on the thrust and nappe tectonics in the Dabic orogenic belt, which have been seldom systematically studied before. The geometric features including the division and the spatial distribution of various thrust and nappe tectonics in the Dabie orogen have been first studied, which is followed by the detailed studies on their kinematic characteristics in different scales varying from regional tectonics to microtectonics. In the thesis, new deformation ages have been obtained by the isotopic methods of ~(40)Ar-~(39)Ar, Sm-Nd and Rb-Sr minerals-whole rock isochrons on the mylonites formed in three ductile shear zones which bounded three different major nappes in the Dabie collisional orogenic belt. And the petrological, geochemical characteristics of some metamorphic rocks as well as the geotectonics of their protoliths, which have also deformed in the ductile shear zone, are analyzed and discussed. In the paper, twelve nappes in the Dabie orogen are first divided, which are bounded by various important NWW or NW-strike faults and three NNE-strike faults. They are Shangcheng Nappe, Huoshan Nappe, Yuexi Nappe, Yingshanjian-Hengzhong Nappe, Huangzhen Nappe, Xishui-Huangmei Nappe, Zhoudang Nappe, Suhe-Huwan Nappe, Xinxian Nappe, Hong'an Nappe, Mulan Nappe and Hhuangpi-Susong Nappe. In the Dabie orogen, three types of thrust and nappe tectonics belonging to two stages have been confirmed. They are: (1) early stage ductile thrust -nappe tectonics which movement direction was top-to-the-south; (2) late stage brittle to ductile-brittle thrust-nappe tectonics which are characterized by double-vergence movement, including top-to-the-north and top-to-the-south; (3) the third type also belongs to the late stage which also characterized by double-vergence movement, including top-to-the-east and top-to-the-west, and related to the strike-slip movement. The deformation ages of both Wuhe-Shuihou ductile shear zone and Taihu-Mamiao ductile shear zone have been dated by ~(40)Ar-~(39)Ar method. ~(40)Ar/~(39)Ar plateau ages of biotite and mica from the mylonites in these two shear zones are 219.57Ma and 229.12Ma. The plateau ages record the time of ductile deformation of the ductile shear zones, which made the concerned minerals of the mylonites exhume from amphibolite facies to the middle-upper crustal conditions by the early stage ductile thrust-nappe tectonics. The mineral isochons of Sm-Nd and Rb-Sr dating on the same mylonite sample of the metamafic rocks are 156.5Ma and 124.56Ma respectively. The two isochron ages suggest that the mylonitic rock strongly deformed in the amphilbolite facies at 156Ma and then exhumed to the upper crustal green schist condition at 124Ma with the activities of the Quiliping-Changlinggang ductile shear zone which bounded to the southen edge of Xinxian Nappe. Studies of the petrological and geochemical characteristics of some meta-mafic rocks and discussion on the geotectonics of their protoliths indicate that their protoliths were developped in an island arc or back-arc basin or active continental margin in which calc-alkline basalts formed. This means that arc-accretion orogeny had evolved in the margins of North china plate and/or Yangtze plate before these two plates directly collided with each other during the evolution process of Dabie orogen. Three-stage evolution of the thrust-nappe tectonics in Dabie collisional orogen has been induced based on the above-mentioned studies and previous work of others. And a possible 3-stage exhumation model (Thrust-Positive Flower Structure Model) has also been proposed.
Resumo:
The Namche Barwa metamorphic rock indenter is a part of the Indian plate. The Aniqiao fault, a northeastern striking shear zone, is the eastern boundary of the Namche Barwa metamorphic rock indenter. The activities of the Aniqiao fualt reflects the history of structure deformation and uplift of the Namche Barwa metamorphic rock indenter. In this dissertation, studied the history of activities of the Aniqiao fault, I study the deformation of the Namche Barwa metamorphic rock indenter based on which, I try to discuss the history of action and deformation of the eastern Tibet. The Aniqiao fault composes of mica quartz schist. With observing in the field and by the microscope, there are at least two stages of deformation. The earlier is right lateral striking, the later is normal striking. The biotite, in the hornblende biotitic mylonite in western footwall, the muscovite and sericite, in the mica quartz schist in eastern hangingwall, show 4 plateau and isochron ages: 3.7-3.3Ma, 6.8-6.4Ma, 13.4-13.2Ma, 23.9Ma, by ~(40)Ar/~(39)Ar. Combine the characteristics of kinematics with the characteristics of isotopic ages, this dissertation figured three stages of deformation: in 23.9Ma and 13.4-13.2 Ma, the Aniqiao fault undertook twice strike-slip deformation; in 6.8Ma-6.4Ma, the Aniqiao fault occurred normal strike deformation; in 3.7-3.3Ma, there was another thermal case which maybe relating to uplift. Combine the deformation of the Aniqiao fault and the deformation of the western boundary fault of the Namche Barwa metamorphic rock indenter, this dissertation considers that the Namche Barwa metamorphic rock indenter has occurred three defomational cases during the period of Oligocene and Quaternary: in 23Ma and 13Ma, the Namche Barwa metamorphic rock indenter wedged into the Gangdisi granite zone; from 6-7Ma, the Namche Barwa metamorphic rock indenter begins to uplift. From 6-7Ma, the Namche Barwa metamorphic rock indenter must has been occurred multi-stage uplifting. The indentation of the Namche Barwa metamorphic rock indenter is correspond to the structure escape of the Chuanxi, Dianxi blocks. In the surface deformation, the movement of these blocks are very harmonious.
Resumo:
The East Shandong gold province is located on the southeastern margin of the North China Craton and features uplift in the north and depression in the south. The uplift area is made up of the Archaean Jiaodong Group, the Proterozoic Jingshan Group and Yanshannian granites. Most gold deposits in the uplift area are spatially associated with the Yanshannian granites. Two types of gold mineralization occur in the region: the quartz-vein type hosted in the Linglong granite suite, and the shear zone type hosted by either the Linglong granite or Guojialing granitoid suites. The mineralization ages are 113~126 Ma. The southern part of East Shandong contains the Mesozoic Jiaolai basin, which formed during regional extension. The basin is bounded by the Wulian-Rongcheng fault in the southeast and the Tanlu fault in the west. The Pengjiakuang, Fayunkuang and Dazhuangzi gold deposit occurs on the northeastern margin of the basin. The mineralization ages of these deposits are 110~128 Ma. This paper focuses on a low-angle detachment fault developed between the Proterozoic Jingshan Group metamorphic complex and the northeastern margin of the basin. Our field work shows that the distribution of the Pengjiakuang gold deposit was controlled by the detachment fault. Moreover, the Fayunkuang, Guocheng and Liaoshang gold deposits also occurr in the periphery of the basin, and their features are similar to Pengjiakuang gold deposit. The study of geological geochemistry of the gold deposits has shown: ①three-type gold deposit was situated in the Jiaodong area, including altered rock type (Jiaojia type), quartz vein type (Linglong type) and breccia type (Pengjiakuang type); the ore-forming materials and fluid for Pengjiakuang type gold deposit shows multiple source; ②the ore materials of Jiaojia and Linglong type deposits are mainly from deep source. The author has studied geological-geochemical dynamics of three types deposits in Jiaodong area. The study of tectonic dynamics shows that ore-forming structure differential stress values of Pengjiakuang gold deposit is 100 * 10~6~130 * 10~6 Pa, and that of Jiaojia gold deposit is 100 * 10~5~194 * 10~6 Pa. Dynamics of hydrothermal ore-forming fluid has also been studied in this paper. Author applies Bernoulli equation to dynamic model of hydrothermal fluid motion in brittle fracture and cracks (quartz vein type gold mineralization), and applies Darcy law to dynamic model of hydro thermal fluid motion in porous medium (altered rock type gold mineralization). Author does daring try in order to study quantitativly transport mechanism of hydrothermal ore-forming fluid in this paper. The study of fluid inclusions and crystal dynamics shows that reaction system of hydrothermal ore-forming includes three types, as follows: ore-forming reaction, controlling reaction and buffer controlling reaction. They depend on each other, controlling each other, which form a organic system. Further research shown that formation of ore shoots was controlled by coincidence processes of tectonic dynamic condition and thermodynamic evolution. This paper has summaried reginoal metallogenic laws and seted up metallogenic(dynamics) models for Jiaodong gold ore belt.
Resumo:
Dabie shan lies between Northchina crust and Yangzi crust, which is the result of the collisional orogenen in Triassic period. The biggest area of UHP metamorphic zone have been found in Dabie Shan, which have been verified formed during the course of collision and extrusion after orogenic activity. The Dabie shan is divisioned into four parts, which are North Huaiyang metamorphic zone, North Dabie complex zone, South Dabie ultra-high pressure metamorphic zone and Susong metamorphic zone. Extension structure of late Mesozoic is the key to explain the intrusion and outcrop of UHP metamorphic rocks in Dabie Shan. During the course of structure evolution of the Dabie shan in late Mesozoic period, Luotian dome was formed with the old gneiss lifting from the core of the Dabie shan. There are four enormous ductile zone circled Luotian dorm. Xiaotian-mozitan shear zone is the limit of North Huaiyang metamorphic zone and North Dabie complex zone; Shuihou-wuhe shear zone is the limit of North Dabie complex zone and South Dabie ultra-high pressure metamorphic zone; Taihu-mamiao shears zone is the limit of South Dabie ultra-high pressure metamorphic zone and Susong metamorphic zone and Susong-Qingshuihe shear zone is the south limit of Susong metamorphic zone; the old stress at Dabie shan in late Mesozoic was about 90MPa through the experiment of transmission electricity microscope. The main four ductile shear zone of Dabie shan all have the characteristic of detachment, Xiaotian-mozitan shear zone detached to NNE, the detachment direction of Shuihou-wuhe shear zone and Taihu-mamiao shears zone is SSE, and Susong-Qingshuihe shear zone is SW. The finite strain measurement show that Xiaotian-mozitan shear zone have experienced detachment which was more than 50km, and the detachment of Susong-Qingshuihe shear zone was more than 12km in late Mesozoic; the Flin parameter of Shuihou-wuhe shear zone is much smaller than 1(0.01-0.1), which show that this shear zone was squeezed when it was formed and the initiative function of Luotian granite intrusion during the course of detachment. The Flin parameter of Taihu-mamiao shears zone is above 1(1.1) and Susong-Qingshuihe shear zone is much more than 1(7.6), which show that they are formed in the state of extension at the beginning. These all Flin parameter imply a transition from pure shear to simple shear of the south three shear zone circling Luotian dome from north to south. The rock group analysis show that the rocks inside shear zone encountered middle or high temperature metamorphic activity. The single mineral ~(40)Ar/~(39)Ar age of the main shear zone at Dabie shan show that the three shear zone north to Luotian dome were formed about 190Ma.Taihu-mamiao shear zone was the earliest, Susong shear zone was later than former, and Shuihou-wuhe sheanaone was the latest. They were all the chanel of returning of UHP metamorphic rocks, so they all representative the returning age of UHP metamorphic rocks. The final outcrop of these UHP metamorphic rocks was due to the detachment aroused by the enormous magma intrusion. The biotite age of deformed rocks in Susong-Qingshuihe shear zone is in average 126Ma, and the age of Xiaotian-mozitan is about 125Ma, which is in the same time or a little later than magma intrusion of Luotian dome, and imply that granite intrusion of late Mesozoic in Dabie orogenen is the reason of the detachment.
Resumo:
The research area of this paper covers the maximum exploration projects of CNPC, including Blocks 1/2/4 and Block 6 of the Muglad basin and the Melut basin in Bocks 3/7 in Sudan. Based on the study of the evolution history of the Central African Shear Zone (CASZ), structural styles and filling characteristics of the rift basins, it is put forward that the rift basins in Sudan are typical passive rift basins undergoing the strike-slip, extension, compression and inversion since the Cretaceous. The three-stage rift basins overlapped obliquely. The extension and rifting during the Early Cretaceous is 50-70% of the total extension. The features of the passive rift basins decided that there is a single sedimentary cycle and one set of active source rocks within the middle. Influenced by the three-stage rifting and low thermal gradient, hydrocarbon generation and charging took place very late, and the oil pool formation mechanism is very unique from the Lower Cretaceous rift sequences to the Paleogene. The reservoir-seal assemblages are very complicated in time and space. The sealing capacity of cap rocks was controlled by the CASZ. In general the oils become heavier towards the CASZ and lighter far away. The oil biodegradation is the reason causing the high total acid number. The determination of effective reservoir depth ensures that all discovered fields up to now are high-production fields. The propagation and growth of boundary faults in the rift basins can be divided into a simple fault propagation pattern and a fault growth-linkage pattern. It is firstly found that the linkage of boundary fault segments controls the formation of petroleum systems. Three methods have been established to outline petroleum systems. And a new classification scheme of rift-type petroleum system has been put forward: pre-rift, syn-rift (including passive and active) and post-rift petroleum systems. This scheme will be very important for the further exploration of rift basins. This paper firstly established the formation models of oil pools for the passive rift basins in Sudan: the coupling of accommodation zones and main plays for the formation of giant fields. The overlapping of late rifting broke the anticlines to be several fault-blocks. This process determined that anti-fault blocks are the main traptypes in the cretaceous sequences and anticlines in the Paleogene. This can explain why the traptypes are different between the Muglad and Mefut basins, and will provide theoretic guidance for the exploration strategy. The established formation mechanism and models in this paper have had great potential guidance and promotion for the exploration in Sudan, and resulted in significant economic and social benefit. A giant field of 500 million tons oil in place was found 2003. The cost in Blocks 3/7 is only 0.25
Resumo:
The High Grade Metamorphic Complex (HGMC) of Variscan basement of north Sardinia is characterized by the widespread of migmatites. This study is focused on two localities of NE Sardinia (Porto Ottiolu and Punta Sirenella) where ortho- and para-derivates migmatites outcrop. A geological and structural survey was carried out, leading to the realization of a geological schematic map of Punta Sirenella area. Several samples of different rocks were collected for petrographic, micro-structural minero-chemical and geochemical analyses. In the Porto Ottiolu area three main deformation phases have been identified; D1, characterized by tight folds with sub-horizontal axes, rarely preserved in paragneisses; D2, that produce a pervasive foliation oriented N100° 45°SW marked by biotite and sillimanite blastesis and locally transposed by shear zone oriented N170°; D3, late deformation phase caused symmetric folds with sub-horizontal axes with no axial plane schistosity. Leucosomes form pods and layers along S2 schistosity but also leucosomes along shear zones have been observed. In the Punta Sirenella area, three main deformation phases have been identified; D1, is manifested by the transposition of centimeter-sized leucosomes and is rarely observed in paragneisses were produce open folds with sub-vertical axes; D2, NW-SE oriented on whose XY plane three mineralogical lineation (quartz+plagioclase, fibrolite+quarz and muscovite) lie; D3, a ductile-brittle deformation phase that produce a mylonitc S3 foliation that locally become the most evident schistosity in the field oriented N140° steeply dipping toward NE. In both areas, leucosomes of sedimentary-derived migmatites are generally trondhjemitic pointing out for a H2O fluxed melting reaction, but also granitic leucosomes have been found, produced by muscovite dehydration melting. Leucosomes of migmatitic orthogneiss instead, have granitic compositions. Migmatization started early, during the compressional and crustal thickening (sin-D1, pre-D2) and was still active during exhumation stage. For each studied outcrop of migmatite pseudosections for the average mesosome composition have been calculated; these pseudosections have been used to model the P-T conditions of anatexis on the basis of the melt volume (%) of melt, Si/Al and Na/K molar ratios, modal content of garnet and Si content in metamorphic white mica. Further pseudosections have been calculated for the average composition of leucosomes in order to define the P-T conditions of the end of the crystallization through intersection of solidus curve and isopleths of Si content in white mica and/or XMg ratio in biotite. Thermodynamic modeling on ortho- and sedimentary-derived migmatites of Punta Sirenella yield P-T conditions of 1.1-1.3 GPa - 670-740°C for migmatitic event and 0.75-0.90 GPa - 660-730°C for the end of crystallization. These conditions are fit well with previous studies on adjacent rocks. Modeling of Porto Ottiolu ortho- and sedimentary-derived migmatites yield P-T conditions of 0.85-1.05 GPa - 690-730°C for migmatitic event and 0.35-0.55 GPa - 630-690°C strongly affected by re-equilibration during exhumation, expecially for crystallization conditions. Geochemical analyses of samples belonging to Porto Ottiolu and Punta Sirenella orthogneisses show a strong link with those of other orthogneisses outcropping in NE Sardinia (for instance, Lode-Mamone and Golfo Aranci) that are considered the intrusive counterparts of middle-Ordovician metavolcanics rocks outcropping in the Nappe Zone. Thus, the studied ortogneiss bodies, even lacking radiometric data, can be considered as belonging to the same magmatic cycle.
Resumo:
In this paper, a newly proposed machining method named “surface defect machining” (SDM) [Wear, 302, 2013 (1124-1135)] was explored for machining of nanocrystalline beta silicon carbide (3C-SiC) at 300K using MD simulation. The results were compared with isothermal high temperature machining at 1200K under the same machining parameters, emulating ductile mode micro laser assisted machining (µ-LAM) and with conventional cutting at 300 K. In the MD simulation, surface defects were generated on the top of the (010) surface of the 3C-SiC work piece prior to cutting, and the workpiece was then cut along the <100> direction using a single point diamond tool at a cutting speed of 10 m/sec. Cutting forces, sub-surface deformation layer depth, temperature in the shear zone, shear plane angle and friction coefficient were used to characterize the response of the workpiece. Simulation results showed that SDM provides a unique advantage of decreased shear plane angle which eases the shearing action. This in turn causes an increased value of average coefficient of friction in contrast to the isothermal cutting (carried at 1200 K) and normal cutting (carried at 300K). The increase of friction coefficient however was found to aid the cutting action of the tool due to an intermittent dropping in the cutting forces, lowering stresses on the cutting tool and reducing operational temperature. Analysis shows that the introduction of surface defects prior to conventional machining can be a viable choice for machining a wide range of ceramics, hard steels and composites compared to hot machining.
Resumo:
Using molecular dynamics (MD) simulation, this paper investigates anisotropic cutting behaviour of single crystal silicon in vacuum under a wide range of substrate temperatures (300 K, 500 K, 750 K, 850 K, 1173 K and 1500 K). Specific cutting energy, force ratio, stress in the cutting zone and cutting temperature were the indicators used to quantify the differences in the cutting behaviour of silicon. A key observation was that the specific cutting energy required to cut the (111) surface of silicon and the von Mises stress to yield the silicon reduces by 25% and 32%, respectively, at 1173 K compared to what is required at 300 K. The room temperature cutting anisotropy in the von Mises stress and the room temperature cutting anisotropy in the specific cutting energy (work done by the tool in removing unit volume of material) were obtained as 12% and 16% respectively. It was observed that this changes to 20% and 40%, respectively, when cutting was performed at 1500 K, signifying a very strong correlation between the anisotropy observed during cutting and the machining temperature. Furthermore, using the atomic strain criterion, the width of primary shear zone was found to vary with the orientation of workpiece surface and temperature i.e. it remains narrower while cutting the (111) surface of silicon or at higher machining temperatures. A major anecdote of the study based on the potential function employed in the study is that, irrespective of the cutting plane or the cutting temperature, the state of the cutting edge of the diamond tool did not show direct diamond to graphitic phase transformation.
Resumo:
Neste trabalho descreve-se e interpreta-se a estratigrafia e palinologia de rochas sedimentares e metassedimentos de idade devónica e carbónica aflorantes ao longo da zona de cisalhamento Porto-Tomar, a Sul na Bacia de Santa Susana e em vários locais onde afloram os Calcários de Odivelas. Existe um registo de sedimentação descontínuo possivelmente associado a esta zona de cisalhamento desde o Devónico Superior até ao Pennsylvaniano. Desde o Devónico Superior até ao Mississippiano esta sedimentação é marinha, de carácter essencialmente turbiditico com uma tendência geral para se tornar mais proximal. A maturação térmica atingida por estas rochas (Unidade de Albergaria-a-Velha) é alta e a unidade é considerada pós-madura em termos de potencial gerador de hidrocarbonetos. O metamorfismo incipiente é acompanhado por intensa deformação. A bacia do Buçaco é inteiramente terrestre e tem a sua idade restrita ao Gjeliano (Pennsylvaniano superior). O controlo da sedimentação pela actividade da zona de cisalhamento Porto-Tomar é evidente. A sua maturação térmica é relativamente baixa (dentro da catagénese) e a deformação menos intensa, contrastando com a Unidade de Albergaria-a-Velha com a qual parece ter uma relação geométrica complexa, de origem tectónica. As relações de campo e dados da maturação térmica permitem inferir um evento térmico e de deformação à escala regional entre o Serpukoviano e o Gjeliano e outro, essencialmente de deformação, entre o Gjeliano e o Carniano (Triássico Superior). A bacia de Santa Susana tem características semelhantes à do Buçaco, visto estar enquadrada também numa zona de cisalhamento importante que neste caso separa a Zona de Ossa-Morena da Zona Sul Portuguesa. A sua idade é kasimoviana, possivelmente também moscoviana (Pennsylvaniano médio). A evolução térmica da bacia e a relação estrutural com as unidades circundantes permite inferir um evento térmico e de deformação regionalmente importante entre o Viseano e o (?)Moscoviano-Kasimoviano. O estudo detalhado de vários locais onde afloram os Calcários de Odivelas permite desenhar uma paleogeografia regional durante o intervalo Emsiano terminal-Givetiano (fim do Devónico Inferior – Devónico Médio) para o sector Oeste da Zona de Ossa-Morena: Actividade vulcânica em regime marinho (e talvez subaéreo), formando edifícios vulcânicos no topo dos quais (e possivelmente também em altos fundos estruturais) se instalaram recifes, tendo a comunidade recifal, em termos de diversidade, persistido durante todo ou grande parte deste intervalo de tempo. O evento Choteč basal é observável num destes locais.