1000 resultados para GENETIC-HYPERTENSION
Resumo:
Hypertension is a common heritable cardiovascular risk factor. Some rare monogenic forms of hypertension have been described, but the majority of patients suffer from essential hypertension, for whom the underlying genetic mechanisms are not clear. Essential hypertension is a complex trait, involving multiple genes and environmental factors. Recently, progress in the identification of common genetic variants associated with essential hypertension has been made due to large-scale international collaborative projects. In this article we review the new research methods used as well as selected recent findings in this field.
Resumo:
Nitric oxide (NO) plays a major role in the regulation of cardiovascular and metabolic homeostasis, as evidenced by insulin resistance and arterial hypertension in endothelial NO synthase (eNOS) null mice. Extrapolation of these findings to humans is difficult, however, because eNOS gene deficiency has not been reported. eNOS gene polymorphism and impaired NO synthesis, however, have been reported in several cardiovascular disease states and could predispose to insulin resistance. High-fat diet induces insulin resistance and arterial hypertension in normal mice. To test whether partial eNOS deficiency facilitates the development of insulin resistance and arterial hypertension during metabolic stress, we examined effects of an 8-week high-fat diet on insulin sensitivity (euglycemic clamp) and arterial pressure in eNOS(+/-) mice. When fed a normal diet, these mice had normal insulin sensitivity and were normotensive. When fed a high-fat diet, however, eNOS(+/-) mice developed exaggerated arterial hypertension and had fasting hyperinsulinemia and a 35% lower insulin-stimulated glucose utilization than control mice. The partial deletion of the eNOS gene does not alter insulin sensitivity or blood pressure in mice. When challenged with nutritional stress, however, partial eNOS deficiency facilitates the development of insulin resistance and arterial hypertension, providing further evidence for the importance of this gene in linking metabolic and cardiovascular disease.
Resumo:
Hypertension affects approximately 1 billion people worldwide. Owing to population aging, hypertension-related cardiovascular burden is expected to rise in the near future. In addition to genetic variants influencing the blood pressure response to antihypertensive drugs, several genes encoding for drug-metabolizing or -transporting enzymes have been associated with blood pressure and/or hypertension in humans (e.g., ACE, CYP1A2, CYP3A5, ABCB1 and MTHFR) regardless of drug treatment. These genes are also involved in the metabolism and transport of endogenous substances and their effects may be modified by selected environmental factors, such as diet or lifestyle. However, little is currently known on the complex interplay between environmental factors, endogenous factors, genetic variants and drugs on blood pressure control. This review will discuss the respective role of population-based primary prevention and personalized medicine for arterial hypertension, taking a pharmacogenomics' perspective focusing on selected pharmacogenes.
Resumo:
Rapport de synthèse : Les maladies cardio-vasculaires constituent les causes principales causes de morbidité et de mortalité dans les pays industrialisés. Des études épidémiologiques ont démontré l'implication de facteurs de risques comme l'hypertension, l'hypercholestérolémie, l'obésité abdominale, le diabète et le tabagisme dans le développement des affections cardiovasculaires comme l'infarctus du myocarde ou l'accident vasculaire cérébral. De larges études génétiques cas-contrôle ont contribué modestement à l'identification de gènes de susceptibilité au développement de ces FRCV. Une étude populationnelle offre par contre l'avantage d'effectuer des études associatives pour des traits phénotypiques continus correctement mesurés et aussi pour des traits de catégories utilisant des protocoles d'étude cas-contrôle très discordants. ~ Elle permet l'exploration des déterminants génétiques comme par exemple le syndrome métabolique. Cette approche permet également de procéder à des analyses de séquençage sur l'ADN des participants chez qui un trait phénotypique spécifique est étudié mais distribué de manière opposée. A titre d'exemple, le séquençage de l'ADN de participants à taux très élevé d'HDL-cholestérol versus très bas de ce marqueur lipidique permet d'identifier des variants génétiques rares localisés sur les parties codantes de gènes spécifiques associés aux dyslipidémies. Pour ce faire, nous avons recruté 6'188 personnes âgées de 35 à 75 ans, d'origine caucasienne et résidant en ville de Lausanne (3251 femmes et 2937 hommes). L'obtention d'un tel collectif a nécessité l'échantillonnage aléatoire de quelque 19'830 personnes de cette tranche d'âge. Les participants ont fait l'objet d'une anamnèse approfondie et d'un examen clinique. Le bilan était complété par une prise de sang pour le dosage de paramètres biologiques ainsi qu'une analyse .génétique. Cette dernière a été effectuée après extraction d'ADN au moyen d'une puce Affimetrix qui évalue la présence de quelques 500'000 SNPs. Les données récoltées lors de cette étude dévoilent que l'obésité (index de masse corporelle > 30 kg/m2), le tabagisme, l'hypertension (pression artérielle >_ 140/90 mmHg et/ou hypertension traitée), une dyslipidémie (LDL cholestérol élevé et/ou HDL cholestérol bas et/ou triglycéride élevé) et le diabète (glucose à jeun >_ 7 mmol/l et/ou traitement) affectent respectivement 947 (15,7%), 1673 (27%), 2268 (36,7%), 2113 (34,2%) et 407 (6,6%) participants. La prévalence de ces FRCV est plus marquée chez les hommes que chez les femmes. Dans les deux genres les prévalences de l'obésité, de l'hypertension et du diabète augmentent drastiquement avec l'âge. En conclusion la prévalence des FRCV est élevée au sein d'une population représentative de Lausanne âgée de 35 à 75 ans. A l'avenir, l'étude CoLaus constituera par la richesse de ses données phénotypiques et génétiques, une source unique pour investiguer l'épidémiologie et l'identification de gènes associés à ces FRCV.
Resumo:
OBJECTIVE:: Report of a 16q24.1 deletion in a premature newborn, demonstrating the usefulness of array-based comparative genomic hybridization in persistent pulmonary hypertension of the newborn and multiple congenital malformations. DESIGN:: Descriptive case report. SETTING:: Genetic department and neonatal intensive care unit of a tertiary care children's hospital. INTERVENTIONS:: None. PATIENT:: We report the case of a preterm male infant, born at 26 wks of gestation. A cardiac malformation and bilateral hydronephrosis were diagnosed at 19 wks of gestation. Karyotype analysis was normal, and a 22q11.2 microdeletion was excluded by fluorescence in situ hybridization analysis. A cesarean section was performed due to fetal distress. The patient developed persistent pulmonary hypertension unresponsive to mechanical ventilation and nitric oxide treatment and expired at 16 hrs of life. MEASUREMENTS AND MAIN RESULTS:: An autopsy revealed partial atrioventricular canal malformation and showed bilateral dilation of the renal pelvocaliceal system with bilateral ureteral stenosis and annular pancreas. Array-based comparative genomic hybridization analysis (Agilent oligoNT 44K, Agilent Technologies, Santa Clara, CA) showed an interstitial microdeletion encompassing the forkhead box gene cluster in 16q24.1. Review of the pulmonary microscopic examination showed the characteristic features of alveolar capillary dysplasia with misalignment of pulmonary veins. Some features were less prominent due to the gestational age. CONCLUSIONS:: Our review of the literature shows that alveolar capillary dysplasia with misalignment of pulmonary veins is rare but probably underreported. Prematurity is not a usual presentation, and histologic features are difficult to interpret. In our case, array-based comparative genomic hybridization revealed a 16q24.1 deletion, leading to the final diagnosis of alveolar capillary dysplasia with misalignment of pulmonary veins. It emphasizes the usefulness of array-based comparative genomic hybridization analysis as a diagnostic tool with implications for both prognosis and management decisions in newborns with refractory persistent pulmonary hypertension and multiple congenital malformations.
Resumo:
Objective: The NALP3 inflammasome functions as a sensor of danger signals and triggers processing and release of IL-1b. Mutations of NALP3 are responsible for the cryopyrin associated periodic syndromes, a group of autoinflammatory disorders that respond to IL1 inhibition. Genetic studies have also linked NALP3 to hypertension in man, but the mechanism is not understood. The aim of this study is to investigate the role of NAPL3 inflammasome in the development of hypertension in an animal model. Design and Method: Six-week old male WT and NALP3 KO mice were used for generating a two-kidney, one clip (2K1C) renovascular hypertension. A U-shaped stainless steel clip (O^ ¼0.12mm) was placed on left renal artery under anaesthesia. The same surgery without clipping was performed in sham mice. At week 6 and 12 after the clipping, intra-arterial blood pressure (BP) was measured in conscious mice. Blood was collected for plasma renin analysis. Heart and kidney were excised and stored for molecular and morphological examinations. n¼5-6 mice per group. Data are mean_SEM. Results: Mean BP was significantly increased at week 6 and 12 in WT-2K1C mice compared to WT-sham group (MBPweek6: 138_2 vs.124_3 mmHg, p<0.01 and MBPweek12: 141_5 vs.122_3 mmHg, p<0.01) followed with an significant increase in heart weight (HW) and a decrease in clipped kidney weight indices in WT-2K1C mice compared to the WT-sham (HW/ BWweek6: 4.65_0.04 vs. 3.99_0.12 mg/g, p<0.001 and HW/BWweek12: 4.94_0.15 vs. 4.22_0.12 mg/g, p<0.001). Interestingly, NALP3 KO-2K1C mice did not develop hypertension. The MBP of KO-2K1C mice was comparable to the KO-sham (MBPweek6: 122_3 vs. 119_3 mmHg, p>0.05 and MBPweek6: 128_5 vs.122_4 mmHg, p>0.05). There was also no significant change in heart and kidney weight indices between KO- 2K1C and KO-sham mice. Conclusion: The preliminary results suggest that absence of NALP3 protects mice from the development of renin-dependent hypertension. Further molecular and morphological examinations are ongoing for the confirmation and mechanism explanation.
Resumo:
Essential hypertension is a multifactorial disorder and is the main risk factor for renal and cardiovascular complications. The research on the genetics of hypertension has been frustrated by the small predictive value of the discovered genetic variants. The HYPERGENES Project investigated associations between genetic variants and essential hypertension pursuing a 2-stage study by recruiting cases and controls from extensively characterized cohorts recruited over many years in different European regions. The discovery phase consisted of 1865 cases and 1750 controls genotyped with 1M Illumina array. Best hits were followed up in a validation panel of 1385 cases and 1246 controls that were genotyped with a custom array of 14 055 markers. We identified a new hypertension susceptibility locus (rs3918226) in the promoter region of the endothelial NO synthase gene (odds ratio: 1.54 [95% CI: 1.37-1.73]; combined P=2.58 · 10(-13)). A meta-analysis, using other in silico/de novo genotyping data for a total of 21 714 subjects, resulted in an overall odds ratio of 1.34 (95% CI: 1.25-1.44; P=1.032 · 10(-14)). The quantitative analysis on a population-based sample revealed an effect size of 1.91 (95% CI: 0.16-3.66) for systolic and 1.40 (95% CI: 0.25-2.55) for diastolic blood pressure. We identified in silico a potential binding site for ETS transcription factors directly next to rs3918226, suggesting a potential modulation of endothelial NO synthase expression. Biological evidence links endothelial NO synthase with hypertension, because it is a critical mediator of cardiovascular homeostasis and blood pressure control via vascular tone regulation. This finding supports the hypothesis that there may be a causal genetic variation at this locus.
Resumo:
AIM: To study if gene alterations affecting renal sodium reabsorption associate with susceptibility to licorice-induced hypertension.METHODS: Finnish subjects (n = 30) with a previously documented incident of licorice-induced hypertension were recruited for the study using a newspaper announcement. Their previous clinical and family histories as well as serum electrolyte levels were examined. DNA samples from all individuals were screened for variants of the genes encoding 11beta-hydroxysteroid dehydrogenase type 2 (11betaHSD2) and alpha-, beta-, and gamma-subunits of the epithelial sodium channel (ENaC).RESULTS: Upon licorice predisposition, the patients had a mean blood pressure of 201/118 mmHg. Circulating potassium, renin, and aldosterone levels were low. No significant DNA variations were identified in the 11betaHSD2 gene. Four subjects were heterozygous for beta- and gammaENaC variants previously shown to be associated with hypertension. Furthermore, a novel G insertion (2004-2005insG) in the SCNN1A gene encoding the alphaENaC was identified in two subjects. The frequency of these ENaC variants was significantly higher in subjects with licorice-induced hypertension (6/30 i.e. 20%) than in blood donors (11/301 i.e. 3.7%, P = 0.002).CONCLUSIONS: Defects of the 11betaHSD2 gene do not constitute a likely cause for licorice-induced hypertension. Variants of the ENaC subunits may render some individuals sensitive to licorice-induced metabolic alterations and hypertension.
Resumo:
Hypertension is a heritable and major contributor to the global burden of disease. The sum of rare and common genetic variants robustly identified so far explain only 1%-2% of the population variation in BP and hypertension. This suggests the existence of more undiscovered common variants. We conducted a genome-wide association study in 1,621 hypertensive cases and 1,699 controls and follow-up validation analyses in 19,845 cases and 16,541 controls using an extreme case-control design. We identified a locus on chromosome 16 in the 5' region of Uromodulin (UMOD; rs13333226, combined P value of 3.6×10(-11)). The minor G allele is associated with a lower risk of hypertension (OR [95%CI]: 0.87 [0.84-0.91]), reduced urinary uromodulin excretion, better renal function; and each copy of the G allele is associated with a 7.7% reduction in risk of CVD events after adjusting for age, sex, BMI, and smoking status (H.R. = 0.923, 95% CI 0.860-0.991; p = 0.027). In a subset of 13,446 individuals with estimated glomerular filtration rate (eGFR) measurements, we show that rs13333226 is independently associated with hypertension (unadjusted for eGFR: 0.89 [0.83-0.96], p = 0.004; after eGFR adjustment: 0.89 [0.83-0.96], p = 0.003). In clinical functional studies, we also consistently show the minor G allele is associated with lower urinary uromodulin excretion. The exclusive expression of uromodulin in the thick portion of the ascending limb of Henle suggests a putative role of this variant in hypertension through an effect on sodium homeostasis. The newly discovered UMOD locus for hypertension has the potential to give new insights into the role of uromodulin in BP regulation and to identify novel drugable targets for reducing cardiovascular risk.
Resumo:
Narrow arterioles in the retina have been shown to predict hypertension as well as other vascular diseases, likely through an increase in the peripheral resistance of the microcirculatory flow. In this study, we performed a genome-wide association study in 18,722 unrelated individuals of European ancestry from the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium and the Blue Mountain Eye Study, to identify genetic determinants associated with variations in retinal arteriolar caliber. Retinal vascular calibers were measured on digitized retinal photographs using a standardized protocol. One variant (rs2194025 on chromosome 5q14 near the myocyte enhancer factor 2C MEF2C gene) was associated with retinal arteriolar caliber in the meta-analysis of the discovery cohorts at genome-wide significance of P-value <5×10(-8). This variant was replicated in an additional 3,939 individuals of European ancestry from the Australian Twins Study and Multi-Ethnic Study of Atherosclerosis (rs2194025, P-value = 2.11×10(-12) in combined meta-analysis of discovery and replication cohorts). In independent studies of modest sample sizes, no significant association was found between this variant and clinical outcomes including coronary artery disease, stroke, myocardial infarction or hypertension. In conclusion, we found one novel loci which underlie genetic variation in microvasculature which may be relevant to vascular disease. The relevance of these findings to clinical outcomes remains to be determined.
Resumo:
Hypertension is one of the most common complex genetic disorders. We have described previously 38 single nucleotide polymorphisms (SNPs) with suggestive association with hypertension in Japanese individuals. In this study we extend our previous findings by analyzing a large sample of Japanese individuals (n=14 105) for the most associated SNPs. We also conducted replication analyses in Japanese of susceptibility loci for hypertension identified recently from genome-wide association studies of European ancestries. Association analysis revealed significant association of the ATP2B1 rs2070759 polymorphism with hypertension (P=5.3×10(-5); allelic odds ratio: 1.17 [95% CI: 1.09 to 1.26]). Additional SNPs in ATP2B1 were subsequently genotyped, and the most significant association was with rs11105378 (odds ratio: 1.31 [95% CI: 1.21 to 1.42]; P=4.1×10(-11)). Association of rs11105378 with hypertension was cross-validated by replication analysis with the Global Blood Pressure Genetics consortium data set (odds ratio: 1.13 [95% CI: 1.05 to 1.21]; P=5.9×10(-4)). Mean adjusted systolic blood pressure was highly significantly associated with the same SNP in a meta-analysis with individuals of European descent (P=1.4×10(-18)). ATP2B1 mRNA expression levels in umbilical artery smooth muscle cells were found to be significantly different among rs11105378 genotypes. Seven SNPs discovered in published genome-wide association studies were also genotyped in the Japanese population. In the combined analysis with replicated 3 genes, FGF5 rs1458038, CYP17A1, rs1004467, and CSK rs1378942, odds ratio of the highest risk group was 2.27 (95% CI: 1.65 to 3.12; P=4.6×10(-7)) compared with the lower risk group. In summary, this study confirmed common genetic variation in ATP2B1, as well as FGF5, CYP17A1, and CSK, to be associated with blood pressure levels and risk of hypertension.
Resumo:
The prevalence of hypertension in African Americans (AAs) is higher than in other US groups; yet, few have performed genome-wide association studies (GWASs) in AA. Among people of European descent, GWASs have identified genetic variants at 13 loci that are associated with blood pressure. It is unknown if these variants confer susceptibility in people of African ancestry. Here, we examined genome-wide and candidate gene associations with systolic blood pressure (SBP) and diastolic blood pressure (DBP) using the Candidate Gene Association Resource (CARe) consortium consisting of 8591 AAs. Genotypes included genome-wide single-nucleotide polymorphism (SNP) data utilizing the Affymetrix 6.0 array with imputation to 2.5 million HapMap SNPs and candidate gene SNP data utilizing a 50K cardiovascular gene-centric array (ITMAT-Broad-CARe [IBC] array). For Affymetrix data, the strongest signal for DBP was rs10474346 (P= 3.6 × 10(-8)) located near GPR98 and ARRDC3. For SBP, the strongest signal was rs2258119 in C21orf91 (P= 4.7 × 10(-8)). The top IBC association for SBP was rs2012318 (P= 6.4 × 10(-6)) near SLC25A42 and for DBP was rs2523586 (P= 1.3 × 10(-6)) near HLA-B. None of the top variants replicated in additional AA (n = 11 882) or European-American (n = 69 899) cohorts. We replicated previously reported European-American blood pressure SNPs in our AA samples (SH2B3, P= 0.009; TBX3-TBX5, P= 0.03; and CSK-ULK3, P= 0.0004). These genetic loci represent the best evidence of genetic influences on SBP and DBP in AAs to date. More broadly, this work supports that notion that blood pressure among AAs is a trait with genetic underpinnings but also with significant complexity.
Resumo:
Hypertension and chronic kidney disease (CKD) are complex traits representing major global health problems. Multiple genome-wide association studies have identified common variants in the promoter of the UMOD gene, which encodes uromodulin, the major protein secreted in normal urine, that cause independent susceptibility to CKD and hypertension. Despite compelling genetic evidence for the association between UMOD risk variants and disease susceptibility in the general population, the underlying biological mechanism is not understood. Here, we demonstrate that UMOD risk variants increased UMOD expression in vitro and in vivo. Uromodulin overexpression in transgenic mice led to salt-sensitive hypertension and to the presence of age-dependent renal lesions similar to those observed in elderly individuals homozygous for UMOD promoter risk variants. The link between uromodulin and hypertension is due to activation of the renal sodium cotransporter NKCC2. We demonstrated the relevance of this mechanism in humans by showing that pharmacological inhibition of NKCC2 was more effective in lowering blood pressure in hypertensive patients who are homozygous for UMOD promoter risk variants than in other hypertensive patients. Our findings link genetic susceptibility to hypertension and CKD to the level of uromodulin expression and uromodulin's effect on salt reabsorption in the kidney. These findings point to uromodulin as a therapeutic target for lowering blood pressure and preserving renal function.