940 resultados para GENETIC CONSERVATION
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Microsatellites are well-known DNA markers used in a variety of studies such as genome mapping, genetic diversity analysis, genetic conservation and phylogenetic studies. Although microsatellites are important markers, their development and characterization demands extensive time and high cost. Thus, before new markers are developed for a particular species, it is worthwhile to test the available markers from related species. In the present study, we evaluate cattle-derived microsatellite markers for genetic studies of water buffalo. Eighty-five percents of a total of 120 microsatellite markers were optimized using buffalo DNA (Bubalus bubalis). The results showed in this paper were also deposited in the National Center for Biological Information database (NCBI) (ProbeDB and UniSTS) for use in population genetic studies of buffalo by the scientific community. The use of heterologous primers significantly reduces the cost of developing specific markers for buffalo, providing a useful short cut for the genetic population analysis and gene mapping studies.
Resumo:
With the emergence of areas degraded by human activities, the chemical soil properties and silvicultural characters became important in understanding the succession process of tree species and planning of landscape restoration. This study aimed to evaluate the distribution of tree species in areas with different levels of human disturbance, relating silvicultural aspects to the soil chemical properties and characterizing the type of vegetation, for integration of genetic conservation program in situ. The study was conducted in the area of Research and Extension Experimental Farm (FEPE) from UNESP, Ilha Solteira, in Selviria - MS. Through transect, 64 plots were marked 50 m equidistant with dimensions of 10 x 10 m, where: 29 plots were in an highly disturbed area (HDA), five in moderately disturbed area (MDA), 15 in lowly disturbed area (LDA), six in riparian stream of Vestia river (Riparian Forest) and nine in the legal reserve. Soil samples were collected at two depths (0.0 to 0.20 and 0.20 to 0.40 m) for the chemical analysis and the assessment of silvicultural characters, such as height, diameter at breast height (DBH) and shape. The study of the natural distribution of tree species and edaphic condition in the different evaluated areas showed that: the soil chemical properties associated with the level of human disturbance and conservation of the areas are influencing the natural occurrence, species diversity and development of the trees. Height, DBH and shape are good indicators to assess the growth of the tree community and relate them to soil chemical properties; LDA and legal reserve presented higher natural occurrence, number of individuals and number of species. In the riparian forest, basal area values, height, shape and chemical soil properties were higher. From the 97 species found, six have the potential to be used in a program of genetic conservation in situ. They are: Astronium fraxinifolium, Terminalia argentea, Curatella americana, Cupania vernalis, Qualea jundiahy and Andira cuyabensis.
Resumo:
One of the greatest challenges for the agricultural system is to establish agricultural production combined with the conservation of genetic resources, mainly aiming to protect the Permanent Preservation Areas. In this context, mulungu ( Erythrina velutina Willd), among other native species, has been suffering with anthropogenic pressures in various ecosystems, causing reductions in its genetic basis. This work aims to identify ecological and genetic population parameters as indicators of sustainability in two natural populations of mulungu, located in riparian forest, in the state of Sergipe, and to assess the tendency to their sustainability, aiming genetic conservation of the species. The matrix of Pressure-State-Impact/Effect-Response (PEI/ER) was used with the selection of 13 indicators, from the use of RAPDmolecular markers and biochemical (enzymes) markers in populations, in order to present them as relevant information to measure progress as for sustainability and conservation ofmulungu. The studied populations presented low tendency to sustainability, requiring strategies to change this status.
Resumo:
Lychnophora ericoides and Lychnophora pinaster are species used in popular medicine as analgesic or anti-inflammatory agents to treat contusions, rheumatism, and insect bites. In this study, 21 simple sequence repeat loci of L. ericoides were developed and transferred to L. pinaster. Three populations of L. ericoides and 2 populations of L. pinaster were evaluated; they were collected in the State of Minas Gerais. Population parameters were estimated, and the mean values of observed and expected heterozygosity were 0.297 and 0.408 (L. ericoides) and 0.228 and 0.310 (L. pinaster), respectively. Greater genetic variability was observed within populations than between populations of L. ericoides (62 and 37%) and L. pinaster (97 and 2.8%). These results provide information for genetic conservation and taxonomic studies of these endangered species.
Resumo:
Xylella fastidiosa is a fastidious, xylem-limited bacterium that causes a range of economically important plant diseases. Here we report the complete genome sequence of X. fastidiosa clone 9a5c, which causes citrus variegated chlorosis - a serious disease of orange trees. The genome comprises a 52.7% GC-rich 2,679,305-base-pair (bp) circular chromosome and 'two plasmids of 51,158 bp and 1,285 bp. We can assign putative functions to47% of the 2,904 predicted coding regions. Efficient metabolic functions are predicted, with sugars as the principal energy and carbon source, supporting existence in the nutrient-poor xylem sap. The mechanisms associated with pathogenicity and virulence involve toxins, antibiotics and ion sequestration systems, as well as bacterium-bacterium and bacterium-host interactions mediated by a range of proteins. Orthologues of some of these proteins have only been identified in animal and human pathogens; their presence in X. fastidiosa indicates that the molecular basis for bacterial pathogenicity is both conserved and independent of host. At least 83 genes are bacteriophage-derived and include virulence-associated genes from other bacteria, providing direct evidence of phage-mediated horizontal gene transfer.
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
The concept of effective population size (N(e)) is an important measure of representativeness in many areas. In this research, we consider the statistical properties of the number of contributed gametes under practical situations by adapting Crow and Denninston's (1988) N(e) formulas for dioecious species. Three sampling procedures were considered. In all circumstances, results show that as the offspring sex ratio (r) deviates from 0.5, N(e) values become smaller, and the efficiency of gametic control for increasing N(e) is reduced. For finite populations, where all individuals are potentially functional parents, the reduction in N(e) due to an unequal sex ratio can be compensated for through female gametic control when 0.28 <= r <= 0.72. This outcome is important when r is unknown. When only a fraction of the individuals in a population is taken for reproduction, N(e) is meaningful only if the size of the reference population is clearly defined. Gametic control is a compensating factor in accession regeneration when the viability of the accession is around 70 or 75%. For germ-plasm collection, when parents are a very small fraction of the population, maximum N(e) will be approximately 47 and 57% of the total number of offspring sampled, with female gametic control, r varying between 0.3 and 0.5, and being constant over generations.
Resumo:
An increased incidence of Clostridium difficile infection (CDI) is associated with the emergence of epidemic strains characterised by high genetic diversity. Among the factors that may have a role in CDI there is a family of 29 paralogs, the cell wall proteins (CWPs), which compose the outer layer of the bacterial cell and are likely to be involved in colonisation. Previous studies have shown that 12 of the29 cwp genes are clustered in the same region, named after slpA (cwp1) the slpA locus, whereas the remaining 17 paralogs are distributed throughout the genome. The variability of 14 of these 17 cwp paralogs was determined in 40 C. difficile clinical isolates belonging to six of the currently prevailing PCR ribotypes. Based on sequence conservation, these cwp genes were divided into two groups, one comprising cwp loci having highly conserved sequences in all isolates, and the other 5 loci showing low genetic conservation between isolates of the same PCR ribotype as well as between different PCR ribotypes. Three conserved CWPs, Cwp16, Cwp18 and Cwp25, and two variable ones, Cwp26 and Cwp27, were characterised further by Western blot analysis of total cell extracts or S-layer preparations of the C. difficile clinical isolates. Expression of genetically invariable CWPs is well conserved in all isolates, while genetically variable CWPs are not always expressed at comparable levels even in strains containing identical sequences but belonging to different PCR ribotypes. In addition, we chose to analyse the immune response obtained in a protection experiment, carried out in hamsters, using a protein microarray approach to study the in vivo expression and the immunoreactivity of several surface proteins, including 18 Cwps.
Resumo:
In sexually reproducing organisms, the specific combinations of parental alleles can have important consequences on offspring viability and fitness. Accordingly, genetic relationship between mates can be used as a criterion for mate choice. Here, we used microsatellite genetic markers to estimate the genetic relationship between mating pairs in the wild boar, Sus scrofa. Males, females and foetuses proceeding from Portugal, Spain and Hungary were genotyped using 14 microsatellite markers. The genetic relationship between mates was estimated using different measures of foetus heterozygosity. We found that the observed heterozygosity of foetuses was lower than that expected under random mating. This result occurred mainly when Sd2 (relatedness of parental genomes) was used as the heterozygosity measure. After simulations, we concluded that the observed low heterozygosity was possibly due to outbreeding avoidance. Outbreeding avoidance based on genetically different genomes might play an important role in species evolution and its genetic conservation.
Resumo:
Genetic variation at allozyme and mitochondrial DNA loci was investigated in the Australian lungfish, Neoceratodus forsteri Krefft 1870. Tissue samples for genetic analysis were taken non-lethally from 278 individuals representing two spatially distinct endemic populations (Mary and Burnett rivers), as well as one population thought to be derived from an anthropogenic translocation in the 1890's (Brisbane river). Two of 24 allozyme loci resolved from muscle tissue were polymorphic. Mitochondrial DNA nucleotide sequence diversity estimated across 2,235 base pairs in each of 40 individuals ranged between 0.000423 and 0.001470 per river. Low genetic variation at allozyme and mitochondrial loci could be attributed to population bottlenecks, possibly induced by Pleistocene aridity. Limited genetic differentiation was detected among rivers using nuclear and mitochondrial markers suggesting that admixture may have occurred between the endemic Mary and Burnett populations during periods of low sea level when the drainages may have converged before reaching the ocean. Genetic data was consistent with the explanation that lungfish were introduced to the Brisbane river from the Mary river. Further research using more variable genetic loci is needed before the conservation status of populations can be determined, particularly as anthropogenic demands on lungfish habitat are increasing. In the interim we recommend a management strategy aimed at conserving existing genetic variation within and between rivers.
Resumo:
Araucaria cunninghamii (hoop pine) typically occurs as an emergent tree over subtropical and tropical rainforests, in a discontinuous distribution that extends from West Irian Jaya at about 0°30'S, through the highlands of Indonesian New Guinea and Papua New Guinea, along the east coast of Australia from 11°39'S in Queensland to 30°35'S in northern New South Wales. Plantations established in Queensland since the 1920s now total about 44000 ha, and constitute the primary source for the continuing supply of hoop pine quality timber and pulpwood, with a sustainable harvest exceeding 440 000 m3 y-1. Establishment of these managed plantations allowed logging of all native forests of Araucaria species (hoop pine and bunya pine, A. bidwillii) on state-owned lands to cease in the late 1980s, and the preservation of large areas of araucarian forest types within a system of state-owned and managed reserves. The successful plantation program with this species has been strongly supported by genetic improvement activities since the late 1940s - through knowledge of provenance variation and reproductive biology, the provision of reliable sources of improved seed, and the capture of substantial genetic gains in traits of economic importance (for example growth, stem straightness, internode length and spiral grain). As such, hoop pine is one of the few tropical tree species that, for more than half a century, has been the subject of continuous genetic improvement. The history of commercialisation and genetic improvement of hoop pine provides an excellent example of the dual economic and conservation benefits that may be obtained in tropical tree species through the integration of gene conservation and genetic improvement with commercial plantation development. This paper outlines the natural distribution and reproductive biology of hoop pine, describes the major achievements of the genetic improvement program in Queensland over the past 50+ y, summarises current understanding of the genetic variation and control of key selection traits, and outlines the means by which genetic diversity in the species is being conserved.
Resumo:
The introgression of domestic dog genes into dingo populations threatens the genetic integrity of 'pure' dingoes. However, dingo conservation efforts are hampered by difficulties in distinguishing between dingoes and hybrids in the field. This study evaluates consistency in the status of hybridisation (i.e. dingo, hybrid or dog) assigned by genetic analyses, skull morphology and visual assessments. Of the 56 south-east Queensland animals sampled, 39 (69.6%) were assigned the same status by all three methods, 10 (17.9%) by genetic and skull methods, four (7.1%) by genetic and visual methods; and two (3.6%) by skull and visual methods. Pair-wise comparisons identified a significant relationship between genetic and skull methods, but not between either of these and visual methods. Results from surveying 13 experienced wild dog managers showed that hybrids were more easily identified by visual characters than were dingoes. A more reliable visual assessment can be developed through determining the relationship between (1) genetics and phenotype by sampling wild dog populations and (2) the expression of visual characteristics from different proportions and breeds of domestic dog genes by breeding trials. Culling obvious hybrids based on visual characteristics, such as sable and patchy coat colours, should slow the process of hybridisation.
Resumo:
This study examines the population genetic structure of Asian elephants (Elephas maximus) across India, which harbours over half the world's population of this endangered species. Mitochondrial DNA control region sequences and allele frequencies at six nuclear DNA microsatellite markers obtained from the dung of free-ranging elephants reveal low mtDNA and typical microsatellite diversity. Both known divergent clades of mtDNA haplotypes in the Asian elephant are present in India, with southern and central India exhibiting exclusively the β clade of Fernando et al. (2000), northern India exhibiting exclusively the α clade and northeastern India exhibiting both, but predominantly the α clade. A nested clade analysis revealed isolation by distance as the principal mechanism responsible for the observed haplotype distributions within the α and β clades. Analyses of molecular variance and pairwise population FST tests based on both mitochondrial and microsatellite DNA suggest that northern-northeastern India, central India, Nilgiris (in southern India) and Anamalai-Periyar (in southern India) are four demographically autonomous population units and should be managed separately. In addition, evidence for female philopatry, male-mediated gene flow and two possible historical biogeographical barriers is described.