407 resultados para GELLAN GUM
Resumo:
Cochin University of Science And Technology
Resumo:
The effect on the viscoelastic behaviour, of pressure-treating hydrated gumarabic samples (800 MPa) at different pH values (2.8, 4.2 and 8.0) was investigated, using controlled stress rheometry. The treated samples were analysed for their complex (G∗), storage (G′) and loss (G″) moduli as a function of frequency, using dynamic oscillatory testing. Significant changes in the rheologicalproperties were observed in both the pressurised gum solutions and in those previously buffered at pH 2.8. The gum, at its natural pH (4.25) and at alkaline pH (8.0), was enhanced by pressure treatment, but only for the already “good” quality gum samples. High-pressure treatment had substantial effects on the frequency-dependence of the moduli of both the pressurised and the pressurised/pH-treated solutions, with the latter being more pronounced, suggesting differing structures or changes in the overall degree of interaction of the gum systems after pressure treatment.
Resumo:
Gum arabic is widely used in the food industry as an additive, both as a thickener and an emulsifier. This study has compared the emulsification properties of two types of gums, KLTA (Acacia senegal) and GCA (Acacia seyal), both in their native/untreated forms and after exposure to high pressure (800 MPa). Further studies were undertaken to chemically modify the disulphide linkages present and to investigate the effects of their reduction on the diffusion of the carbohydrate materials. The emulsification properties of the gum samples were examined by determining the droplet size distribution in a ‘‘model’’ oil-in-water system. Results showed that high pressure treatment and chemical reduction of gums changed the emulsification properties of both gums. The high molecular weight component in arabinogalactanproteins (AGP/GP), and more ‘‘branched’’ carbohydrates present in gum arabic, may be responsible for the emulsification properties of GCA gum, indicating that the emulsification mechanisms for KLTA and GCA were different.
Resumo:
Three experiments examine the role of articulatory motor planning in experiencing an involuntary musical recollection (an “earworm”). Experiment 1 shows that interfering with articulatory motor programming by chewing gum reduces both the number of voluntary and the number of involuntary—unwanted—musical thoughts. This is consistent with other findings that chewing gum interferes with voluntary processes such as recollections from verbal memory, the interpretation of ambiguous auditory images, and the scanning of familiar melodies, but is not predicted by theories of thought suppression, which assume that suppression is made more difficult by concurrent tasks or cognitive loads. Experiment 2 shows that chewing the gum affects the experience of “hearing” the music and cannot be ascribed to a general effect on thinking about a tune only in abstract terms. Experiment 3 confirms that the reduction of musical recollections by chewing gum is not the consequence of a general attentional or dual-task demand. The data support a link between articulatory motor programming and the appearance in consciousness of both voluntary and unwanted musical recollections.
Effect of high-hydrostatic pressure and pH treatments on the emulsification properties of gum arabic
Resumo:
This study investigated the emulsification properties of the native gums and those treated at high pressure (800 MPa) both at their “natural” pH (4.49 and 4.58, respectively) and under “acidic and basic” pH (2.8 and 8.0) conditions. The emulsification behaviour of KLTA gum was found to be superior to that of the GCA gum. High pressure and pH treatment changed the emulsification properties of both gums. The acidic amino acids in gum arabic were shown to play an important role in their emulsification behaviour, and mechanisms of emulsification for the two gums were suggested to be different. The highly “branched” nature of the carbohydrate in GCA gum was also thought to be responsible for the “spreading” of droplet size distributions observed. Coomassie brilliant blue binding was used to indicate conformational changes in protein structure and Ellman’s assay was used to estimate any changes in levels of free thiols present.
Resumo:
P>The aim of this research was to study spray drying as potential action to protect chlorophyllide from environmental conditions for shelf-life extension and characterisation of the powders. Six formulations were prepared with 7.5 and 10 g of carrier agents [gum Arabic (GA), maltodextrin (MA) and soybean protein isolate (SPI)]/100 mL of chlorophyllide solutions. The powders were evaluated for morphological characteristics (SEM), particle size, water activity, moisture, density, hygroscopicity, cold water solubility, sorption isotherms, colour and stability, during 90 days. All the powders were highly soluble, with solubility values around 97%. A significant lower hygroscopicity was observed for GA powders, whilst the lower X(m) values obtained by GAB equation fitting of the sorption isotherms was observed for the 7.5 g MA/100 mL samples. All formulations, but the 1 (7.5 g SPI/100 mL of chlorophyllide), provided excellent stability to the chlorophyllide during 90 days of storage even at room temperature.
Resumo:
Structural and optical characteristics of zein-based films produced with different xanthan gum concentrations have been studied in this work. Scanning electronic microscopy (SEM) and optical microscopy (OM) were performed to identify if the incorporation of the material into the matrix film, formed a homogeneous structure, as well as to characterize its constituents as the colour and shape. SEM showed a homogeneous matrix for the control (0% xanthan) with good lipid distribution. However, when the samples were investigated by OM, lipids globules in the control biofilm appeared larger and more dispersed in the matrix than the others samples. Transparency/opacity test measurements by UV-VIS analysis indicated that the addition of xanthan to the film matrix lowered significantly its transparency properties Overall, the addition of xanthan gum favoured lipid dispersion in the matrix, making biomaterials more homogeneous, although with less transparency.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Sorption isotherms of lemon juice (LE) powders with and without additives-18% maltodextrin (MA) or 18% gum Arabic (GA) were determined at 20-50 degrees C. Addition of additives was shown to affect the isotherms in such a way that, at the same water activity, samples LE + GA and LE + MA presented lower equilibrium moisture content and were not so affected by varying temperature. The net isosteric heats of sorption of juice powders with additives were higher (less negative) than those of lemon juice powders, suggesting that there are more active polar sites in the product without addition of GA or MA. In general, the quality properties decreased with the addition of maltodextrin and gum arabic and it was obtained similar values for LE + GA and LE + MA.
Resumo:
Barley plants (cultivars Embrapa 127, 128 and 129) treated with xanthan gum, and with different time intervals between the administration of the inducer and the pathogen, demonstrated induction of resistance against Bipolaris sorokiniana. Induction was shown to have local and systemic action. In order to prove the resistance effect, biochemical analyses were performed to quantify proteins and the enzymatic activity of beta-1,3 glucanase. Results demonstrated that barley plants treated with the inducer, showed an increase in the concentration of proteins, as well as in the activity of the enzyme beta-1,3 glucanase, when compared with the extract from healthy plants. In infected plants, protein concentrations decreased and enzymatic activity was lower than in healthy plants. Results suggest that barley plants treated with xanthan gum developed mechanisms responsible for induced resistance, which are still unknown. The most important macromolecule in the defense mechanism was demonstrated to be PR-protein, due to its accumulation and concentration of proteins. However, it may not be the only macromolecule responsible for the resistance effect. (C) 2004 Elsevier SAS. All rights reserved.
Resumo:
The effect of deacetylated xanthan gum, additives (sucrose, soybean oil, sodium phosphate and propylene glycol) and pH modifications on mechanical properties, hydrophilicity and water activity of cassava starch-xanthan gum films has been studied. Sucrose addition resulted in the highest effect observed on cassava starch films elongation at break. The deacetylated xanthan gum had higher effect on elongation at break when comparing to the acetylated gum, although both gums presented an inferior effect in relation to the obtained with sucrose. However, when comparing to the control and PVC films, lower tensile strength resistance values were observed when adding sucrose. Increased water activity was observed for films added with sucrose, thus, increasing the material biodegradation. Sucrose and deacetylated xanthan gum addition resulted in a slight hydrophilicity increase. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The polysaccharide (VSP) from the gum exudate of quaruba (Vochysia lehmannii) had two components of almost identical M. centred at 24,800, as shown by HSPEC-MALLS. The presence of aggregates was shown since carboxy-reduction gave VSP-RED, which contained low molecular weight components with M-w 19,000 > 5800 and polydispersity ratios dn/dc 0.160 and 0.149, respectively. VSP formed low viscosity aqueous solutions and acid hydrolysis gave Man (30%), Ara (16%), Gal (10%), and Glc (14%). The latter arose partly from GlcA (30%). Methylation analysis revealed mainly neutral units of 2-O- (60%) and 2,3-di-O-substituted Manp (5%), and those of nomeducing ends (8%), 2-O- (3%), and 4-O-substituted Arap and/or 5-O-substituted Araf units (6%). VSP-RED contained Glc (45%), Man (35%), and Ara (13%) and methylation analysis indicated mainly 4-O-substituted Glcp (31%) and 2-O- (51%) and 2,3-di-O-substituted Manp units (5%). A predominant alternating structure for VSP was shown by its C-13 NMR spectrum, which contained 10 main signals and a small one of C-6 of GlcpA. This was confirmed by formation, on partial hydrolysis of VSP, of a tetrasaccharide, which was characterised by NMR spectroscopy and ESI-MS as beta-GlcpA-(1 --> 2)-alpha-Manp-(1 --> 4)-beta-GlcpA-(1 --> 2)-Man, which arose from the main chain, thus confirming VSP to be a glycoglucuronomannan. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Moisture equilibrium data of pineapple pulp (PP) powders with and without additives - 18% maltodextrin (MD) or 18% gum Arabic (GA) - were determined at 20, 30, 40 and 50 degrees C by using the static gravimetric method in a water activity range of 0.06-0.90. The obtained isotherms were sigmoid, typical type 111, and the Guggenhein-Anderson-de Boer (GAB) model was fitted to the experimental data of equilibrium moisture content versus water activity. Addition of additives was shown to affect the isotherms in such a way that, at the same water activity, samples PP + GA and PP + MD presented lower equilibrium moisture content and were not so affected by varying temperature. The net isosteric heats of sorption of pulp powders with additives were higher (less negative) than those of pineapple pulp powders, suggesting that there are more active polar sites in the product without addition of GA or MD. An empirical exponential relationship could describe the heat of sorption dependence on the material moisture content. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Natural gums have been traditionally applied in cosmetics and the food industry, mainly as emulsification agents. Due to their biodegradability and excellent mechanical properties, new technological applications have been proposed involving their use with conventional polymers forming blends and composites. In this study, we take advantage of the polyelectrolyte character exhibited by the natural gum Chicha (Sterculia striata), extracted in the Northeastern region of Brazil, to produce electroactive nanocomposites. The nanocomposites were fabricated in the form of ultrathin films by combining a metallic phthalocyanine (nickel tetrasulfonated phthalocyanine, NiTsPc) and the Chicha gum in a tetralayer architecture, in conjunction with conventional polyelectrolytes. The presence of the gum led to an efficient adsorption of the phthalocyanine and enhanced the electrochemical response of the films. Upon combining the electrochemical and UV-vis absorption data, energy diagrams of the Chicha/NiTsPc-based system were obtained. Furthermore, modified electrodes based on gum/phthalocyanine films were able to detect dopamine at concentrations as low as 10(-5) M.