920 resultados para GDH sum rule
Resumo:
The light anti-quark and quark distribution in the proton, as well as the neutron to proton ratio of the structure functions, extracted from experimental data, are well fitted by a, statistical model of linear-confined quarks. The parameters of the model are given by a temperature, which is adjusted by the Gottfried sum-rule violation, and two chemical potentials given by the corresponding up (u) and down (d) quark normalizations in the nucleon. The quark energy levels are generated by a relativistic linear-confined scalar plus vector potential.
Resumo:
Recent progress in the solution of Schwinger-Dyson equations, as well as lattice simulation of pure glue QCD, indicate that the gluon propagator and coupling constant are infrared finite. Such non-perturbative information can be introduced in the QCD perturbative expansion in the scheme named Dynamical Perturbation Theory. We exemplify this procedure with the calculation of some two-body non-leptonic annihilation B meson decays, which show agreement with the experimental data in the case of a gluon propagator characterized by a dynamical gluon mass of 500MeV, compatible with the value found in several processes computed with this method. We give a. preliminary account of the application of this procedure at the loop level in the case of the Bjorken sum rule.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The baryon coupling to its current (λB), in conventional QCD sum rule calculations (QCDSR), is shown to scale as the cubic power of the baryon mass, MB. Some theoretical justification for it comes from a simple light-cone model and also general scaling arguments for QCD. But more importantly, taken as a phenomenological ansatz for the present, this may find very good use in current explorations of possible applications of QCDSR to baryon physics both at temperature T = 0, T ≠ 0 and/or density ρ = 0, ρ ≠ 0. © World Scientific Publishing Company.
Resumo:
The electromagnetic tensor for inclusive electron scattering off the pion Wμν for momentum transfers such that q+ = 0, (q+ = q0 + q3) is shown to obey a sum-rule for the component W++. From this sum-rule, one can define the quark-antiquark correlation function in the pion, which characterizes the transverse distance distribution between the quark and antiquark in the light-front pion wave-function. Within the realistic models of the relativistic pion wave function (including instanton vacuum inspired wave function) it is shown that the value of the two-quark correlation radius (rqq̄) is near twice the pion electromagnetic radius (rπ), where rπ ≈ 2/3 fm. We also define the correlation length lcorr where the two-particle correlation have an extremum. The estimation of lcorr ≈ 0.3-0,5 fm is very close to estimations from instanton models of QCD vacuum. It is also shown that the above correlation is very sensitive to the pion light-front wave-function models. © 1997 Elsevier Science B.V.
Resumo:
We support the idea that the baryon, B with mass MB, couples to its current with a coupling λ2 B ∼ 0.71 M6 B from an analysis of magnetic moment sum rules. And we find a sum rule among the experimental magnetic moments which is independent of the parameters of QCDSR. © 1998 Elsevier Science B.V. All rights reserved.
Resumo:
The strangeness content of the nucleon is determined from a statistical model using confined quark levels, and is shown to have a good agreement with the corresponding values extracted from experimental data. The quark levels are generated in a Dirac equation that uses a linear confining potential (scalar plus vector). With the requirement that the result for the Gottfried sum rule violation, given by the New Muon Collaboration (NMC), is well reproduced, we also obtain the difference between the structure functions of the proton and neutron, and the corresponding sea quark contributions.
Resumo:
A comprehensive analysis of electrodisintegration yields of protons on Zr90 is proposed taking into account the giant dipole resonance, isovector giant quadrupole resonance (IVGQR), and quasideuteron contributions to the total photoabsorption cross section from 10 to 140 MeV. The calculation applies the MCMC intranuclear cascade to address the direct and pre-equilibrium emissions and another Monte Carlo-based algorithm to describe the evaporation step. The final results of the total photoabsorption cross section for Zr90 and relevant decay channels are obtained by fitting the (e,p) measurements from the National Bureau of Standards and show that multiple proton emissions dominate the photonuclear reactions at higher energies. These results provide a consistent explanation for the exotic and steady increase of the (e,p) yield and also a strong evidence of a IVGQR with a strength parameter compatible with the E2 energy-weighted sum rule. The inclusive photoneutron cross sections for Zr90 and natZr, derived from these results and normalized with the (e,p) data, are in agreement within 10% with both Livermore and Saclay data up to 140 MeV. © 2007 The American Physical Society.
Resumo:
A statistical quark model, with quark energy levels given by a central linear confining potential is used to obtain the light sea-quark asymmetry, d̄/ū, and also for the ratio d/u, inside the nucleon. After adjusting a temperature parameter by the Gottfried sum rule violation, and chemical potentials by the valence up and down quark normalizations, the results are compared with experimental data available. © 2009 American Institute of Physics.
Resumo:
An improved statistical quark model, with quark energy levels given by a central linear confining potential, is used to obtain the light sea-quark asymmetry, d̄/ū, and also for the corresponding difference d̄-ū, inside the nucleon. In the model, a temperature parameter is adjusted by recent results obtained for the Gottfried sum rule violation, with two chemical potentials adjusted by the valence up and down quark normalizations. The results are compared with available recent experimental data. © 2010 American Institute of Physics.
Resumo:
We consider some existing relativistic models for the nucleon structure functions, relying on statistical approaches instead of perturbative ones. These models are based on the Fermi-Dirac distribution for the confined quarks, where a density of energy levels is obtained from an effective confining potential. In this context, it is presented some results obtained with a recent statistical quark model for the sea-quark asymmetry in the nucleon. It is shown, within this model, that experimental available observables, such as the ratio and difference between proton and neutron structure functions, are quite well reproduced with just three parameters: two chemical potentials used to reproduce the valence up and down quark numbers in the nucleon, and a temperature that is being used to reproduce the Gottfried sum rule violation. © 2010 American Institute of Physics.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In order that confinement should survive, light quarks inside hadrons have a very high acceleration and will feel a thermal bath with an Unruh temperature near 137 MeV. We show that this temperature is consistent with the experimentally observed departure from the Gottfried sum rule for the difference of the proton and neutron structure functions in deep inelastic electron scattering.
Resumo:
The mass splitting of the pseudoscalar mesons η and η′ is approached by taking into account the SU(3)-flavor symmetry breaking and annihilation effects. An extended version of the Schwinger sum rule and a mixing angle equal to -19.51° are obtained.
Resumo:
Using the QCD sum rule approach we study the Y(4260) state assuming that it can be described by a mixed charmonium-tetraquark current with J(PC) = 1(--) quantum numbers. For the mixing angle around theta approximate to (53.0 +/- 0.5)degrees, we obtain a value for the mass which is in good agreement with the experimental mass of the Y(4260). For the decay width into the channel Y -> J/psi pi pi we find the value Gamma(Y -> J/psi pi pi) approximate to (4.1 +/- 0.6) MeV, which is much smaller than the total experimental width Gamma approximate to (95 +/- 14) MeV. However, considering the experimental upper limits for the decay of the Y(4260) into open charm, we conclude that we cannot rule out the possibility of describing this state as a mixed charmonium-tetraquark state. DOI: 10.1103/PhysRevD.86.116012