806 resultados para GALAXIES: INDIVIDUAL: NGC 3923


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the results of new radio interferometer Hi line observations for the merging galaxy pair NGC 4038/9 ('The Antennae'), obtained using the Australia Telescope Compact Array. The results improve substantially with respect to those of van der Hulst and show in detail the two merging galactic discs and the two tidal tails produced by their interaction. The small edge-on spiral dwarf galaxy ESO 572-G045 is also seen near the tip of the southern tail, but distinct from it. It shows no signs of tidal interaction. The northern tidal tail of the Antennae shows no HI connection to the discs and has an extension towards the west. The southern tidal tail is continuous, with a prominent HI concentration at its tip, roughly at the location of the tidal dwarf galaxy observed optically by Mirabel, Dottori & Lutz. Clear velocity structure is seen along the tidal tails and in the galactic discs. Radio continuum images at 20 and 13 cm are also presented, showing the discs in detail.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Redshifts for 100 galaxies in 10 clusters of galaxies are presented based on data obtained between March 1984 and March 1985 from Calar Alto, La Palma, and ESO, and on data from Mauna Kea. Data for individual galaxies are given, and the accuracy of the velocities of the four instruments is discussed. Comparison with published data shows the present velocities to be shifted by + 4.0 km/s on average, with a standard deviation in the difference of 89.7 km/s, consistent with the rms of redshift measurements which range from 50-100 km/s.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The correlation between the breaks in the metallicity distribution and the corotation radius of spiral galaxies has been already advocated in the past and is predicted by a chemodynamical model of our Galaxy that effectively introduces the role of spiral arms in the star formation rate. In this work, we present photometric and spectroscopic observations made with the Gemini Telescope for three of the best candidates of spiral galaxies to have the corotation inside the optical disc: IC 0167, NGC 1042 and NGC 6907. We observed the most intense and well-distributed H ii regions of these galaxies, deriving reliable galactocentric distances and oxygen abundances by applying different statistical methods. From these results, we confirm the presence of variations in the gradients of metallicity of these galaxies that are possibly correlated with the corotation resonance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have searched for young star-forming regions around the merger remnant NGC 2782. By using Galaxy Evolution Explorer far-ultraviolet and near-ultraviolet imaging and H i data we found seven ultraviolet sources, located at distances greater than 26 kpc from the centre of NGC 2782, and coinciding with its western H i tidal tail. These regions were resolved in several smaller systems when Gemini/Gemini multi-object spectrograph (GMOS) r-band images were used. We compared the observed colours to stellar population synthesis models and found that these objects have ages of similar to 1 to 11 Myr and masses ranging from 103.9 to 104.6 M circle dot. By using Gemini/GMOS spectroscopic data we confirm memberships and derive high metallicities for three of the young regions in the tail (12+log(O/H) = 8.74 +/- 0.20, 8.81 +/- 0.20 and 8.78 +/- 0.20). These metallicities are similar to the value presented by the nuclear region of NGC 2782 and also similar to the value presented for an object located close to the main body of NGC 2782. The high metallicities measured for the star-forming regions in the gaseous tidal tail of NGC 2782 could be explained if they were formed out of highly enriched gas which was once expelled from the centre of the merging galaxies when the system collided. An additional possibility is that the tail has been a nursery of a few generations of young stellar systems which ultimately polluted this medium with metals, further enriching the already pre-enriched gas ejected to the tail when the galaxies collided.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context. Recent studies have confirmed the long standing suspicion that M 22 shares a metallicity spread and complex chemical enrichment history similar to that observed in omega Cen. M 22 is among the most massive Galactic globular clusters and its color-magnitude diagram and chemical abundances reveal the existence of sub-populations. Aims. To further constrain the chemical diversity of M 22, necessary to interpret its nucleosynthetic history, we seek to measure relative abundance ratios of key elements (carbon, nitrogen, oxygen, and fluorine) best studied, or only available, using high-resolution spectra at infrared wavelengths. Methods. High-resolution (R = 50 000) and high S/N infrared spectra were acquired of nine red giant stars with Phoenix at the Gemini-South telescope. Chemical abundances were calculated through a standard 1D local thermodynamic equilibrium analysis using Kurucz model atmospheres. Results. We derive [Fe/H] = -1.87 to -1.44, confirming at infrared wavelengths that M 22 does present a [Fe/H] spread. We also find large C and N abundance spreads, which confirm previous results in the literature but based on a smaller sample. Our results show a spread in A(C+N+O) of similar to 0.7 dex. Similar to mono-metallic globular clusters, M 22 presents a strong [Na/Fe]-[O/Fe] anticorrelation as derived from Na and CO lines in the K band. For the first time we recover F abundances in M 22 and find that it exhibits a 0.6 dex variation. We find tentative evidence for a flatter A(F)-A(O) relation compared to higher metallicity globular clusters. Conclusions. Our study confirms and expands upon the chemical diversity seen in this complex stellar system. All elements studied to date show large abundance spreads which require contributions from both massive and low mass stars.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seyfert galaxies are the closest active galactic nuclei. As such, we can use them to test the physical properties of the entire class of objects. To investigate their general properties, I took advantage of different methods of data analysis. In particular I used three different samples of objects, that, despite frequent overlaps, have been chosen to best tackle different topics: the heterogeneous BeppoS AX sample was thought to be optimized to test the average hard X-ray (E above 10 keV) properties of nearby Seyfert galaxies; the X-CfA was thought the be optimized to compare the properties of low-luminosity sources to the ones of higher luminosity and, thus, it was also used to test the emission mechanism models; finally, the XMM–Newton sample was extracted from the X-CfA sample so as to ensure a truly unbiased and well defined sample of objects to define the average properties of Seyfert galaxies. Taking advantage of the broad-band coverage of the BeppoS AX MECS and PDS instruments (between ~2-100 keV), I infer the average X-ray spectral propertiesof nearby Seyfert galaxies and in particular the photon index (~1.8), the high-energy cut-off (~290 keV), and the relative amount of cold reflection (~1.0). Moreover the unified scheme for active galactic nuclei was positively tested. The distribution of isotropic indicators used here (photon index, relative amount of reflection, high-energy cut-off and narrow FeK energy centroid) are similar in type I and type II objects while the absorbing column and the iron line equivalent width significantly differ between the two classes of sources with type II objects displaying larger absorbing columns. Taking advantage of the XMM–Newton and X–CfA samples I also deduced from measurements that 30 to 50% of type II Seyfert galaxies are Compton thick. Confirming previous results, the narrow FeK line is consistent, in Seyfert 2 galaxies, with being produced in the same matter responsible for the observed obscuration. These results support the basic picture of the unified model. Moreover, the presence of a X-ray Baldwin effect in type I sources has been measured using for the first time the 20-100 keV luminosity (EW proportional to L(20-100)^(−0.22±0.05)). This finding suggests that the torus covering factor may be a function of source luminosity, thereby suggesting a refinement of the baseline version of the unifed model itself. Using the BeppoSAX sample, it has been also recorded a possible correlation between the photon index and the amount of cold reflection in both type I and II sources. At a first glance this confirms the thermal Comptonization as the most likely origin of the high energy emission for the active galactic nuclei. This relation, in fact, naturally emerges supposing that the accretion disk penetrates, depending to the accretion rate, the central corona at different depths (Merloni et al. 2006): the higher accreting systems hosting disks down to the last stable orbit while the lower accreting systems hosting truncated disks. On the contrary, the study of the well defined X–C f A sample of Seyfert galaxies has proved that the intrinsic X-ray luminosity of nearby Seyfert galaxies can span values between 10^(38−43) erg s^−1, i.e. covering a huge range of accretion rates. The less efficient systems have been supposed to host ADAF systems without accretion disk. However, the study of the X–CfA sample has also proved the existence of correlations between optical emission lines and X-ray luminosity in the entire range of L_(X) covered by the sample. These relations are similar to the ones obtained if high-L objects are considered. Thus the emission mechanism must be similar in luminous and weak systems. A possible scenario to reconcile these somehow opposite indications is assuming that the ADAF and the two phase mechanism co-exist with different relative importance moving from low-to-high accretion systems (as suggested by the Gamma vs. R relation). The present data require that no abrupt transition between the two regimes is present. As mentioned above, the possible presence of an accretion disk has been tested using samples of nearby Seyfert galaxies. Here, to deeply investigate the flow patterns close to super-massive black-holes, three case study objects for which enough counts statistics is available have been analysed using deep X-ray observations taken with XMM–Newton. The obtained results have shown that the accretion flow can significantly differ between the objects when it is analyzed with the appropriate detail. For instance the accretion disk is well established down to the last stable orbit in a Kerr system for IRAS 13197-1627 where strong light bending effect have been measured. The accretion disk seems to be formed spiraling in the inner ~10-30 gravitational radii in NGC 3783 where time dependent and recursive modulation have been measured both in the continuum emission and in the broad emission line component. Finally, the accretion disk seems to be only weakly detectable in rk 509, with its weak broad emission line component. Finally, blueshifted resonant absorption lines have been detected in all three objects. This seems to demonstrate that, around super-massive black-holes, there is matter which is not confined in the accretion disk and moves along the line of sight with velocities as large as v~0.01-0.4c (whre c is the speed of light). Wether this matter forms winds or blobs is still matter of debate together with the assessment of the real statistical significance of the measured absorption lines. Nonetheless, if confirmed, these phenomena are of outstanding interest because they offer new potential probes for the dynamics of the innermost regions of accretion flows, to tackle the formation of ejecta/jets and to place constraints on the rate of kinetic energy injected by AGNs into the ISM and IGM. Future high energy missions (such as the planned Simbol-X and IXO) will likely allow an exciting step forward in our understanding of the flow dynamics around black holes and the formation of the highest velocity outflows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this Thesis, we study the physical properties and the cosmic evolution of AGN and their host galaxies since z∼3. Our analysis exploits samples of star forming galaxies detected with Herschel at far-IR wavelengths (from 70 up to 500 micron) in different extragalactic surveys, such as COSMOS and the deep GOODS (South and North) fields. The broad-band ancillary data available in COSMOS and the GOODS fields, allows us to implement Herschel and Spitzer photometry with multi-wavelength ancillary data. We perform a multicomponent SED-fitting decomposition to decouple the emission due to star formation from that due to AGN accretion, and to estimate both host-galaxy parameters (such as stellar mass, M* and star formation rate, SFR), and nuclear intrinsic bolometric luminosities. We use the individual estimates of AGN bolometric luminosity obtained through SED-fitting decomposition to reconstruct the redshit evolution of the AGN bolometric luminosity function since z∼3. The resulting trends are used to estimate the overall AGN accretion rate density at different cosmic epochs and to trace the first ever estimate of the AGN accretion history from an IR survey. Later on, we focus our study on the connection between AGN accretion and integrated galaxy properties. We analyse the relationships of AGN accretion with galaxy properties in the SFR-M* plane and at different cosmic epochs. Finally, we infer what is the parameter that best correlates with AGN accretion, comparing our results with previous studies and discussing their physical implications in the context of current scenarios of AGN/galaxy evolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The "main sequence of galaxies"—defined in terms of the total star formation rate ψ versus the total stellar mass M *—is a well-studied tight relation that has been observed at several wavelengths and at different redshifts. All earlier studies have derived this relation from integrated properties of galaxies. We recover the same relation from an analysis of spatially resolved properties, with integral field spectroscopic (IFS) observations of 306 galaxies from the CALIFA survey. We consider the SFR surface density in units of log(M_⊙ yr^−1 Kpc^−2) and the stellar mass surface density in units of log(M_⊙ Kpc^−2) in individual spaxels that probe spatial scales of 0.5–1.5 Kpc. This local relation exhibits a high degree of correlation with small scatter (σ = 0.23 dex), irrespective of the dominant ionization source of the host galaxy or its integrated stellar mass. We highlight (i) the integrated star formation main sequence formed by galaxies whose dominant ionization process is related to star formation, for which we find a slope of 0.81 ± 0.02; (ii) for the spatially resolved relation obtained with the spaxel analysis, we find a slope of 0.72 ± 0.04; and (iii) for the integrated main sequence, we also identified a sequence formed by galaxies that are dominated by an old stellar population, which we have called the retired galaxies sequence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cover: Laboratory for High Energy Astrophysics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A recent all-object spectroscopic survey centred on the Fornax cluster of galaxies has discovered a population of subluminous and extremely compact members, called 'ultra-compact dwarf' (UCD) galaxies. In order to clarify the origin of these objects, we have used self-consistent numerical simulations to study the dynamical evolution a nucleated dwarf galaxy would undergo if orbiting the centre of the Fornax cluster and suffering from its strong tidal gravitational field. We find that the outer stellar components of a nucleated dwarf are removed by the strong tidal field of the cluster, whereas the nucleus manages to survive as a result of its initially compact nature. The developed naked nucleus is found to have physical properties (e. g. size and mass) similar to those observed for UCDs. We also find that although this formation process does not have a strong dependence on the initial total luminosity of the nucleated dwarf, it does depend on the radial density profile of the dark halo in the sense that UCDs are less likely to be formed from dwarfs embedded in dark matter haloes with central 'cuspy' density profiles. Our simulations also suggest that very massive and compact stellar systems can be rapidly and efficiently formed in the central regions of dwarfs through the merging of smaller star clusters. We provide some theoretical predictions on the total number and radial number density profile of UCDs in a cluster and their dependencies on cluster masses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the results of Australia Telescope Compact Array (ATCA) H i line and 20-cm radio continuum observations of the galaxy quartet NGC 6845. The H i emission extends over all four galaxies but can only be associated clearly with the two spiral galaxies, NGC 6845A and B, which show signs of strong tidal interaction. We derive a total H i mass of at least 1.8 x 10(10) M-., most of which is associated with NGC 6845A, the largest galaxy of the group. We investigate the tidal interaction between NGC 6845A and B by studying the kinematics of distinct H i components and their relation to the known H ii regions. No H i emission is detected from the two lenticular galaxies, NGC 6845C and D. A previously uncatalogued dwarf galaxy, ATCA J2001-4659, was detected 4.4 arcmin NE from NGC 6845B and has an H i mass of similar to5 x 10(8) M-.. No H i bridge is visible between the group and its newly detected companion. Extended 20-cm radio continuum emission is detected in NGC 6845A and B as well as in the tidal bridge between the two galaxies. We derive star formation rates of 15-40 M-. yr(-1).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present results from a pilot study of a new wide-field, multicolour (BVR) CCD imaging project, designed to examine galaxy evolution along large-scale filaments that connect clusters of galaxies at intermediate redshifts (0.07 < z < 0.20). Our pilot data set is based on 0.56 deg(2) of observations targeted on Abell 1079 and Abell 1084 using the Wide Field Imager on the Anglo-Australian Telescope. We describe our data reduction pipeline and show that our photometric error is 0.04 mag. By selecting galaxies that lie on the colour-magnitude relation of the two clusters we verify the existence of a low-density (similar to3-4 Mpc(-2)) filament population, conjoining them at a distance of > 3r(Abell) from either cluster. By applying a simple field correction, we characterize this filament population by examining their colour distribution on a (V-R)-(B-V) plane. We confirm the galaxian filament detection at a 7.5 sigma level using a cut at M-V = -18 and we discuss their broad properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the HIPASS Bright Galaxy Catalog (BGC), which contains the 1000 H I brightest galaxies in the southern sky as obtained from the H i Parkes All-Sky Survey ( HIPASS). The selection of the brightest sources is based on their H I peak flux density (S-peak greater than or similar to116 mJy) as measured from the spatially integrated HIPASS spectrum. The derived H I masses range from similar to10(7) to 4 x 10(10) M-.. While the BGC ( z< 0.03) is complete in S-peak, only a subset of &SIM;500 sources can be considered complete in integrated H I flux density (F-H I &GSIM;25 Jy km s(-1)). The HIPASS BGC contains a total of 158 new redshifts. These belong to 91 new sources for which no optical or infrared counterparts have previously been cataloged, an additional 51 galaxies for which no redshifts were previously known, and 16 galaxies for which the cataloged optical velocities disagree. Of the 91 newly cataloged BGC sources, only four are definite H I clouds: while three are likely Magellanic debris with velocities around 400 km s(-1), one is a tidal cloud associated with the NGC 2442 galaxy group. The remaining 87 new BGC sources, the majority of which lie in the zone of avoidance, appear to be galaxies. We identified optical counterparts to all but one of the 30 new galaxies at Galactic latitudes > 10degrees. Therefore, the BGC yields no evidence for a population of free-floating'' intergalactic H I clouds without associated optical counterparts. HIPASS provides a clear view of the local large-scale structure. The dominant features in the sky distribution of the BGC are the Supergalactic Plane and the Local Void. In addition, one can clearly see the Centaurus Wall, which connects via the Hydra and Antlia Clusters to the Puppis Filament. Some previously hardly noticable galaxy groups stand out quite distinctly in the H I sky distribution. Several new structures, including some not behind the Milky Way, are seen for the first time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La galaxie spirale barrée NGC 5430 est particulière en ce sens qu’elle présente un noeud Wolf-Rayet très lumineux et des bras asymétriques. Des spectres longue-fente le long de la barre et dans le bras déformé ainsi que des données SpIOMM couvrant l’ensemble de la galaxie ont été analysées. L’absorption stellaire sous-jacente a été soustraite des spectres longue-fente à l’aide d’un ajustement de modèles théoriques de populations stellaires fait avec le programme GANDALF. L’absorption a un impact très important sur le calcul de l’extinction ainsi que sur les différents diagnostics propres aux régions HII et aux populations stellaires jeunes. Enfin, cette étude montre que NGC 5430 comporte une composante gazeuse ionisée diffuse sur toute son étendue et qu’il est important d’en tenir compte afin d’appliquer correctement les diagnostics. Un des scénarios évolutifs proposés au terme de cette étude est que le noeud Wolf-Rayet constitue le restant d’une petite galaxie ou d’un nuage intergalactique qui serait entré en collision avec NGC 5430. Une structure englobant le noeud Wolf-Rayet se déplace à une vitesse considérablement inférieure (50 - 70 km s-1) à celle attendue à une telle distance du centre de la galaxie (200 - 220 km s-1). De plus, le noeud Wolf-Rayet semble très massif puisque l’intensité maximale du continu stellaire de cette région est semblable à celle du noyau et est de loin supérieure à celle de l’autre côté de la barre. Le nombre d’étoiles Wolf-Rayet (2150) est aussi considérable. Il n’est toutefois pas exclu que la différence de vitesses observée témoigne d’un écoulement de gaz le long de la barre, qui alimenterait la formation stellaire du noeud Wolf-Rayet ou du noyau.