925 resultados para GAIN-CONTROL
Resumo:
Aim: The aim of this study was to investigate the impact of circuit-based exercise on the body composition in obese older women by focusing on physical exercise and body weight (BW) gain control in older people. Methods: Seventy older women (>60 years old) voluntarily took part in the study. Participants were randomized into six different groups according to body mass index (BMI): appropriate weight (AW) control (AWC) and trained (AWT) groups, overweight (OW) control (OWC) and trained (OWT) groups, and obesity (O) control (OC) and trained (OT) groups. The exercise program consisted of 50 minutes of exercise three times per week for 12 weeks. The exercises were alternated between upper and lower body using rest between sets for 40 seconds with intensity controlled by heart rate (70% of work). The contraction time established was 5 seconds to eccentric and concentric muscular action phase. The following anthropometric parameters were evaluated: height (m), body weight (BW, kg), body fat (BF, %), fat mass (FM, kg), lean mass (LM, kg), and BMI (kg/m(2)). Results: The values (mean +/- standard deviation [SD]) of relative changes to BW (-8.0% +/- 0.8%), BF (-21.4% +/- 2.1%), LM (3.0% +/- 0.3%), and FM (-31.2% +/- 3.0%) to the OT group were higher (P < .05) than in the AWT (BW: -2.0% +/- 1.1%; BF: -4.6% +/- 1.8%; FM: -7.0% +/- 2.8%; LM: 0.2% +/- 1.1%) and OWT (BW: -4.5% +/- 1.0%; BF: -11.0% +/- 2.2%; FM: -16.1% +/- 3.2%; LM: -0.2% +/- 1.0%) groups; additionally, no differences were found for C groups. While reduction (P < .03) in BMI according to absolute values was observed for all trained groups (AWT: 22 +/- 1 versus 21 +/- 1; OWT: 27 +/- 1 versus 25 +/- 1, OT: 34 +/- 1 versus 30 +/- 1) after training, no differences were found for C groups. Conclusion: In summary, circuit-based exercise is an effective method for promoting reduction in anthropometrics parameters in obese older women.
Resumo:
We analytically study the input-output properties of a neuron whose active dendritic tree, modeled as a Cayley tree of excitable elements, is subjected to Poisson stimulus. Both single-site and two-site mean-field approximations incorrectly predict a nonequilibrium phase transition which is not allowed in the model. We propose an excitable-wave mean-field approximation which shows good agreement with previously published simulation results [Gollo et al., PLoS Comput. Biol. 5, e1000402 (2009)] and accounts for finite-size effects. We also discuss the relevance of our results to experiments in neuroscience, emphasizing the role of active dendrites in the enhancement of dynamic range and in gain control modulation.
Resumo:
BACKGROUND Pyogenic tonsillitis may often be observed in the general Western population. In severe cases, it may require antibiotic treatment or even hospitalization and often a prompt clinical response will be noted. Here we present an unusual case of progressive multiple organ failure including fulminant liver failure following acute tonsillitis initially mistaken for "classic" pyogenic (that is bacterial) tonsillitis. CASE PRESENTATION A 68-year-old previously healthy white man was referred with suspicion of pyogenic angina. After tonsillectomy, he developed acute liver failure and consecutive multiple organ failure including acute hemodynamic, pulmonary and dialysis-dependent renal failure. Immunohistopathological analysis of his tonsils and liver as well as serum polymerase chain reaction analyses revealed herpes simplex virus-2 to be the causative pathogen. Treatment included high-dose acyclovir and multiorgan supportive intensive care therapy. His final outcome was favorable. CONCLUSIONS Fulminant herpes simplex virus-2-induced multiple organ failure is rarely observed in the Western hemisphere and should be considered a potential diagnosis in patients with tonsillitis and multiple organ failure including acute liver failure. From a clinical perspective, it seems important to note that fulminant herpes simplex virus-2 infection may masquerade as "routine" bacterial severe sepsis/septic shock. This persevering condition should be diagnosed early and treated goal-oriented in order to gain control of this life-threatening condition.
Resumo:
The circadian clock in the suprachiasmatic nucleus (SCN) of the hypothalamus organizes behavioral rhythms, such as the sleep–wake cycle, on a near 24-h time base and synchronizes them to environmental day and night. Light information is transmitted to the SCN by direct retinal projections via the retinohypothalamic tract (RHT). Both glutamate (Glu) and pituitary adenylyl cyclase-activating peptide (PACAP) are localized within the RHT. Whereas Glu is an established mediator of light entrainment, the role of PACAP is unknown. To understand the functional significance of this colocalization, we assessed the effects of nocturnal Glu and PACAP on phasing of the circadian rhythm of neuronal firing in slices of rat SCN. When coadministered, PACAP blocked the phase advance normally induced by Glu during late night. Surprisingly, blocking PACAP neurotransmission, with either PACAP6–38, a specific PACAP receptor antagonist, or anti-PACAP antibodies, augmented the Glu-induced phase advance. Blocking PACAP in vivo also potentiated the light-induced phase advance of the rhythm of hamster wheel-running activity. Conversely, PACAP enhanced the Glu-induced delay in the early night, whereas PACAP6–38 inhibited it. These results reveal that PACAP is a significant component of the Glu-mediated light-entrainment pathway. When Glu activates the system, PACAP receptor-mediated processes can provide gain control that generates graded phase shifts. The relative strengths of the Glu and PACAP signals together may encode the amplitude of adaptive circadian behavioral responses to the natural range of intensities of nocturnal light.
Resumo:
Event-related brain potentials (ERPs) provide high-resolution measures of the time course of neuronal activity patterns associated with perceptual and cognitive processes. New techniques for ERP source analysis and comparisons with data from blood-flow neuroimaging studies enable improved localization of cortical activity during visual selective attention. ERP modulations during spatial attention point toward a mechanism of gain control over information flow in extrastriate visual cortical pathways, starting about 80 ms after stimulus onset. Paying attention to nonspatial features such as color, motion, or shape is manifested by qualitatively different ERP patterns in multiple cortical areas that begin with latencies of 100–150 ms. The processing of nonspatial features seems to be contingent upon the prior selection of location, consistent with early selection theories of attention and with the hypothesis that spatial attention is “special.”
Resumo:
Peripheral auditory neurons are tuned to single frequencies of sound. In the central auditory system, excitatory (or facilitatory) and inhibitory neural interactions take place at multiple levels and produce neurons with sharp level-tolerant frequency-tuning curves, neurons tuned to parameters other than frequency, cochleotopic (frequency) maps, which are different from the peripheral cochleotopic map, and computational maps. The mechanisms to create the response properties of these neurons have been considered to be solely caused by divergent and convergent projections of neurons in the ascending auditory system. The recent research on the corticofugal (descending) auditory system, however, indicates that the corticofugal system adjusts and improves auditory signal processing by modulating neural responses and maps. The corticofugal function consists of at least the following subfunctions. (i) Egocentric selection for short-term modulation of auditory signal processing according to auditory experience. Egocentric selection, based on focused positive feedback associated with widespread lateral inhibition, is mediated by the cortical neural net working together with the corticofugal system. (ii) Reorganization for long-term modulation of the processing of behaviorally relevant auditory signals. Reorganization is based on egocentric selection working together with nonauditory systems. (iii) Gain control based on overall excitatory, facilitatory, or inhibitory corticofugal modulation. Egocentric selection can be viewed as selective gain control. (iv) Shaping (or even creation) of response properties of neurons. Filter properties of neurons in the frequency, amplitude, time, and spatial domains can be sharpened by the corticofugal system. Sharpening of tuning is one of the functions of egocentric selection.
Resumo:
The North Caucasus has been the most unstable region of the Russian Federation since the collapse of the Soviet Union. Considering the scale of violence, the conflict in the region should be regarded as a local civil war between the Salafi Islamic armed underground and the secular authorities of the North Caucasus republics, supported by the security services. The Chechen leader Ramzan Kadyrov, who has made himself de facto independent from Moscow, holds a particularly strong position in the region and his ambition is to gain control of the neighbouring territories. The Russian leadership, which sees the security of the Winter Olympics in Sochi as its top priority, is facing a strategic choice between trying to integrate the North Caucasus with the rest of the federation, or isolating the region and accepting the existence of an informal "internal abroad” within Russia. The cultural processes taking place in the region, including Islamisation, de-modernisation and de-Russification, have been driving the North Caucasus ever further away from the rest of Russia, strengthening a mutual sense of foreignness.
Resumo:
A fundamental problem for any visual system with binocular overlap is the combination of information from the two eyes. Electrophysiology shows that binocular integration of luminance contrast occurs early in visual cortex, but a specific systems architecture has not been established for human vision. Here, we address this by performing binocular summation and monocular, binocular, and dichoptic masking experiments for horizontal 1 cycle per degree test and masking gratings. These data reject three previously published proposals, each of which predict too little binocular summation and insufficient dichoptic facilitation. However, a simple development of one of the rejected models (the twin summation model) and a completely new model (the two-stage model) provide very good fits to the data. Two features common to both models are gently accelerating (almost linear) contrast transduction prior to binocular summation and suppressive ocular interactions that contribute to contrast gain control. With all model parameters fixed, both models correctly predict (1) systematic variation in psychometric slopes, (2) dichoptic contrast matching, and (3) high levels of binocular summation for various levels of binocular pedestal contrast. A review of evidence from elsewhere leads us to favor the two-stage model. © 2006 ARVO.
Resumo:
How do signals from the 2 eyes combine and interact? Our recent work has challenged earlier schemes in which monocular contrast signals are subject to square-law transduction followed by summation across eyes and binocular gain control. Much more successful was a new 'two-stage' model in which the initial transducer was almost linear and contrast gain control occurred both pre- and post-binocular summation. Here we extend that work by: (i) exploring the two-dimensional stimulus space (defined by left- and right-eye contrasts) more thoroughly, and (ii) performing contrast discrimination and contrast matching tasks for the same stimuli. Twenty-five base-stimuli made from 1 c/deg patches of horizontal grating, were defined by the factorial combination of 5 contrasts for the left eye (0.3-32%) with five contrasts for the right eye (0.3-32%). Other than in contrast, the gratings in the two eyes were identical. In a 2IFC discrimination task, the base-stimuli were masks (pedestals), where the contrast increment was presented to one eye only. In a matching task, the base-stimuli were standards to which observers matched the contrast of either a monocular or binocular test grating. In the model, discrimination depends on the local gradient of the observer's internal contrast-response function, while matching equates the magnitude (rather than gradient) of response to the test and standard. With all model parameters fixed by previous work, the two-stage model successfully predicted both the discrimination and the matching data and was much more successful than linear or quadratic binocular summation models. These results show that performance measures and perception (contrast discrimination and contrast matching) can be understood in the same theoretical framework for binocular contrast vision. © 2007 VSP.
Resumo:
Contrast sensitivity is better with two eyes than one. The standard view is that thresholds are about 1.4 (v2) times better with two eyes, and that this arises from monocular responses that, near threshold, are proportional to the square of contrast, followed by binocular summation of the two monocular signals. However, estimates of the threshold ratio in the literature vary from about 1.2 to 1.9, and many early studies had methodological weaknesses. We collected extensive new data, and applied a general model of binocular summation to interpret the threshold ratio. We used horizontal gratings (0.25 - 4 cycles deg-1) flickering sinusoidally (1 - 16 Hz), presented to one or both eyes through frame-alternating ferroelectric goggles with negligible cross-talk, and used a 2AFC staircase method to estimate contrast thresholds and psychometric slopes. Four naive observers completed 20 000 trials each, and their mean threshold ratios were 1.63, 1.69, 1.71, 1.81 - grand mean 1.71 - well above the classical v2. Mean ratios tended to be slightly lower (~1.60) at low spatial or high temporal frequencies. We modelled contrast detection very simply by assuming a single binocular mechanism whose response is proportional to (Lm + Rm) p, followed by fixed additive noise, where L,R are contrasts in the left and right eyes, and m, p are constants. Contrast-gain-control effects were assumed to be negligible near threshold. On this model the threshold ratio is 2(?1/m), implying that m=1.3 on average, while the Weibull psychometric slope (median 3.28) equals 1.247mp, yielding p=2.0. Together, the model and data suggest that, at low contrasts across a wide spatiotemporal frequency range, monocular pathways are nearly linear in their contrast response (m close to 1), while a strongly accelerating nonlinearity (p=2, a 'soft threshold') occurs after binocular summation. [Supported by EPSRC project grant GR/S74515/01]
Resumo:
In experiments reported elsewhere at this conference, we have revealed two striking results concerning binocular interactions in a masking paradigm. First, at low mask contrasts, a dichoptic masking grating produces a small facilitatory effect on the detection of a similar test grating. Second, the psychometric slope for dichoptic masking starts high (Weibull ß~4) at detection threshold, becomes low (ß~1.2) in the facilitatory region, and then unusually steep at high mask contrasts (ß~5.5). Neither of these results is consistent with Legge's (1984 Vision Research 24 385 - 394) model of binocular summation, but they are predicted by a two-stage gain control model in which interocular suppression precedes binocular summation. Here, we pose a further challenge for this model by using a 'twin-mask' paradigm (cf Foley, 1994 Journal of the Optical Society of America A 11 1710 - 1719). In 2AFC experiments, observers detected a patch of grating (1 cycle deg-1, 200 ms) presented to one eye in the presence of a pedestal in the same eye and a spatially identical mask in the other eye. The pedestal and mask contrasts varied independently, producing a two-dimensional masking space in which the orthogonal axes (10X10 contrasts) represent conventional dichoptic and monocular masking. The resulting surface (100 thresholds) confirmed and extended the observations above, and fixed the six parameters in the model, which fitted the data well. With no adjustment of parameters, the model described performance in a further experiment where mask and test were presented to both eyes. Moreover, in both model and data, binocular summation was greater than a factor of v2 at detection threshold. We conclude that this two-stage nonlinear model, with interocular suppression, gives a good account of early binocular processes in the perception of contrast. [Supported by EPSRC Grant Reference: GR/S74515/01]
Resumo:
The ability to distinguish one visual stimulus from another slightly different one depends on the variability of their internal representations. In a recent paper on human visual-contrast discrimination, Kontsevich et al (2002 Vision Research 42 1771 - 1784) re-considered the long-standing question whether the internal noise that limits discrimination is fixed (contrast-invariant) or variable (contrast-dependent). They tested discrimination performance for 3 cycles deg-1 gratings over a wide range of incremental contrast levels at three masking contrasts, and showed that a simple model with an expansive response function and response-dependent noise could fit the data very well. Their conclusion - that noise in visual-discrimination tasks increases markedly with contrast - has profound implications for our understanding and modelling of vision. Here, however, we re-analyse their data, and report that a standard gain-control model with a compressive response function and fixed additive noise can also fit the data remarkably well. Thus these experimental data do not allow us to decide between the two models. The question remains open. [Supported by EPSRC grant GR/S74515/01]
Resumo:
Blurred edges appear sharper in motion than when they are stationary. We proposed a model of this motion sharpening that invokes a local, nonlinear contrast transducer function (Hammett et al, 1998 Vision Research 38 2099-2108). Response saturation in the transducer compresses or 'clips' the input spatial waveform, rendering the edges as sharper. To explain the increasing distortion of drifting edges at higher speeds, the degree of nonlinearity must increase with speed or temporal frequency. A dynamic contrast gain control before the transducer can account for both the speed dependence and approximate contrast invariance of motion sharpening (Hammett et al, 2003 Vision Research, in press). We show here that this model also predicts perceived sharpening of briefly flashed and flickering edges, and we show that the model can account fairly well for experimental data from all three modes of presentation (motion, flash, and flicker). At moderate durations and lower temporal frequencies the gain control attenuates the input signal, thus protecting it from later compression by the transducer. The gain control is somewhat sluggish, and so it suffers both a slow onset, and loss of power at high temporal frequencies. Consequently, brief presentations and high temporal frequencies of drift and flicker are less protected from distortion, and show greater perceptual sharpening.
Resumo:
To investigate amblyopic contrast vision at threshold and above we performed pedestal-masking (contrastdiscrimination) experiments with a group of eight strabismic amblyopes using horizontal sinusoidal gratings (mainly 3 c/deg) in monocular, binocular and dichoptic configurations balanced across eye (i.e. five conditions). With some exceptions in some observers, the four main results were as follows. (1) For the monocular and dichoptic conditions, sensitivity was less in the amblyopic eye than in the good eye at all mask contrasts. (2) Binocular and monocular dipper functions superimposed in the good eye. (3) Monocular masking functions had a normal dipper shape in the good eye, but facilitation was diminished in the amblyopic eye. (4) A less consistent result was normal facilitation in dichoptic masking when testing the good eye, but a loss of this when testing the amblyopic eye. This pattern of amblyopic results was replicated in a normal observer by placing a neutral density filter in front of one eye. The two-stage model of binocular contrast gain control [Meese, T.S., Georgeson, M.A. & Baker, D.H. (2006). Binocular contrast vision at and above threshold. Journal of Vision 6, 1224--1243.] was `lesioned' in several ways to assess the form of the amblyopic deficit. The most successful model involves attenuation of signal and an increase in noise in the amblyopic eye, and intact stages of interocular suppression and binocular summation. This implies a behavioural influence from monocular noise in the amblyopic visual system as well as in normal observers with an ND filter over one eye.
Resumo:
To decouple interocular suppression and binocular summation we varied the relative phase of mask and target in a 2IFC contrast-masking paradigm. In Experiment I, dichoptic mask gratings had the same orientation and spatial frequency as the target. For in-phase masking, suppression was strong (a log-log slope of ∼1) and there was weak facilitation at low mask contrasts. Anti-phase masking was weaker (a log-log slope of ∼0.7) and there was no facilitation. A two-stage model of contrast gain control [Meese, T.S., Georgeson, M.A. and Baker, D.H. (2006). Binocular contrast vision at and above threshold. Journal of Vision, 6: 1224-1243] provided a good fit to the in-phase results and fixed its free parameters. It made successful predictions (with no free parameters) for the anti-phase results when (A) interocular suppression was phase-indifferent but (B) binocular summation was phase sensitive. Experiments II and III showed that interocular suppression comprised two components: (i) a tuned effect with an orientation bandwidth of ∼±33° and a spatial frequency bandwidth of >3 octaves, and (ii) an untuned effect that elevated threshold by a factor of between 2 and 4. Operationally, binocular summation was more tightly tuned, having an orientation bandwidth of ∼±8°, and a spatial frequency bandwidth of ∼0.5 octaves. Our results replicate the unusual shapes of the in-phase dichoptic tuning functions reported by Legge [Legge, G.E. (1979). Spatial frequency masking in human vision: Binocular interactions. Journal of the Optical Society of America, 69: 838-847]. These can now be seen as the envelope of the direct effects from interocular suppression and the indirect effect from binocular summation, which contaminates the signal channel with a mask that has been suppressed by the target. © 2007 Elsevier Ltd. All rights reserved.