582 resultados para GABA.
Resumo:
L’association démontrée récemment entre les commotions cérébrales dans le sport et le développement possible de maladies neurodégénératives a suggéré la possibilité que des altérations persistantes soient présentes dans le cerveau de l’athlète commotionné. En fait, des altérations neurophysiologiques ont récemment été révélées au sein du cortex moteur primaire (M1) d’athlètes ayant un historique de commotions via la stimulation magnétique transcrânienne (SMT). Plus précisément, la période silencieuse corticale (PSC), une mesure d’inhibition liée aux récepteurs GABAB, était anormalement élevée, et cette hyper-inhibition était présente jusqu’à 30 ans post-commotion. La PSC, et possiblement le GABA, pourraient donc s’avérer des marqueurs objectifs des effets persistants de la commotion cérébrale. Toutefois, aucune étude à ce jour n’a directement évalué les niveaux de GABA chez l’athlète commotionné. Ainsi, les études cliniques et méthodologiques composant le présent ouvrage comportent deux objectifs principaux: (1) déterminer si l’inhibition excessive (GABA et PSC) est un marqueur des effets persistants de la commotion cérébrale; (2) déterminer s’il est possible de moduler l’inhibition intracorticale de façon non-invasive dans l’optique de développer de futurs avenues de traitements. L’article 1 révèle une préservation des systèmes sensorimoteurs, somatosensoriels et de l’inhibition liée au GABAA chez un groupe d’athlètes universitaires asymptomatiques ayant subi de multiples commotions cérébrales en comparaison avec des athlètes sans historique connu de commotion cérébrale. Cependant, une atteinte spécifique des mesures liées au système inhibiteur associé aux récepteurs GABAB est révélée chez les athlètes commotionnés en moyenne 24 mois post-commotion. Dans l’article 2, aucune atteinte des mesures SMT liées au système inhibiteur n’est révélée en moyenne 41 mois après la dernière commotion cérébrale chez un groupe d’athlètes asymptomatiques ayant subi 1 à 5 commotions cérébrales. Bien qu’aucune différence entre les groupes n’est obtenue quant aux concentrations de GABA et de glutamate dans M1 via la spectroscopie par résonance magnétique (SRM), des corrélations différentielles suggèrent la présence d’un déséquilibre métabolique entre le GABA et le glutamate chez les athlètes commotionnés. L’article 3 a démontré, chez des individus en bonne santé, un lien entre la PSC et la transmission glutamatergique, ainsi que le GABA et le glutamate. Ces résultats suggèrent que la PSC ne reflète pas directement les concentrations du GABA mesurées par la SRM, mais qu’un lien étroit entre la GABA et le glutamate est présent. L’article 4 a démontré la possibilité de moduler la PSC avec la stimulation électrique transcrânienne à courant direct (SÉTcd) anodale chez des individus en santé, suggérant l’existence d’un potentiel thérapeutique lié à l’utilisation de cette technique. L’article 5 a illustré un protocole d’évaluation des effets métaboliques de la SÉTcd bilatérale. Dans l’article 6, aucune modulation des systèmes GABAergiques révélées par la SMT et la SRM n’est obtenue suite à l’utilisation de ce protocole auprès d’individus en santé. Cet article révèle également que la SÉTcd anodale n’engendre pas de modulation significative du GABA et du glutamate. En somme, les études incluent dans le présent ouvrage ont permis d’approfondir les connaissances sur les effets neurophysiologiques et métaboliques des commotions cérébrales, mais également sur le mécanisme d’action des diverses méthodologies utilisées.
Resumo:
GABAergic alterations in hypothalamus during compensatory hyperplasia after partial hepatectomy (PH), lead nitrate (LN) induced direct hyperplasia and N-nitrosodiethylamine (NDEA) induced neoplasia in liver were investigated. Serum GABA levels were increased in all 3 experimental groups compared with the control. GABA content decreased in hypothalamus of PH and NDEA treated rats, while it increased in LN treated rats. GABAA receptor number and affinity in hypothalamic membrane preparations of rats showed a significant decrease in PH and NDEA treated rats, while in LN treated rats the affinity increased without any change in the receptor number. The GABAB receptor number increased in PH and NDEA treated rats, while it decreased in LN treated rats. The affinity of the receptor also increased in NDEA treated rats. Plasma NE levels showed significant increase in PH and NDEA rats compared with the control while it decreased in LN treated rats. The results of the present study suggests that liver cell proliferation is influencing the hypothalamic GABAergic neurotransmission and these changes regulate the hepatic proliferation through the sympathetic stimulation.
Resumo:
The present thesis is an attempt to understand the role of GABA, GABAA and GABAB receptors in the regulation of liver cell proliferation using in vivo and in vitro models. The work also focuses on the brain GABAergic changes associated with normal and neoplastic cell growth in liver and to delineate its regulatory function. The investigation of mechanisms involving mitogenic models without cell necrosis may contribute our knowledge about both on cell growth, carcinogenesis, liver pathology and treatment. Objectives of the present study are, to induce controlled liver cell proliferation by partial hepatectomy and lead nitrate administration and uncontrolled cell proliferation by N-nitrosodiethylamine treatment in male Wistar rats, the changes in the content of GABA, GABAA,GABAB in various rat brain regions. To study the GABAA and GABAB receptor changes in brain stem, hypothalamus, cerebellum and cerebral cortex during the active cortex during the period of active DNA synthesis in liver of different experimental groups. The changes in GABAA and GABAB receptor function of the brain stem, hypothalamus and cerebellum play an important role sympathetic regulation of cell proliferation and neoplastic growth in liver. The decrease in GABA content in brain stem, hypothalamus and cerebellum during regeneration and neoplasia in liver. The time course of brain GABAergic changes was closely correlated with that of heptic DNA synthesis. The functional significance of these changes was further explored by studying the changes in GABAA and GABAB receptors in brain.
Resumo:
The present study was designed to investigate the protective effect of glucose, oxygen and epinephrine resuscitation on impairment in the functional role of GABAergic, serotonergic, muscarinic receptors, PLC, BAX, SOD, CAT and GPx expression in the brain regions of hypoxia induced neonatal rats. Also, the role of hormones - Triiodothyronine (T3) and insulin, second messengers – cAMP, cGMP and IP3 and transcription factors – HIF and CREB in the regulation of neonatal hypoxia and its resuscitation methods were studied. Behavioural studies were conducted to evaluate the motor function and cognitive deficit in one month old control and experimental rats. The efficient and timely supplementation of glucose plays a crucial role in correcting the molecular changes due to hypoxia, oxygen and epinephrine. The sequence of glucose, epinephrine and oxygen administration at the molecular level is an important aspect of the study. The additive neuronal damage effect due to oxygen and epinephrine treatment is another important observation. The corrective measures by initial supply of glucose to hypoxic neonatal rats showed from the molecular study when brought to practice will lead to healthy intellectual capacity during the later developmental stages, which has immense clinical significance in neonatal care.
Resumo:
In the present study, the effects of 5-HT, GABA and Bone Marrow Cells infused intranigrally to substantia nigra individually and in combinations on unilateral rotenone infused Parkinsonism induced rats. Scatchard analysis of DA, DA D1 and D2 receptors in the corpus striatum, cerebral cortex, cerebellum, brain stem and hippocampus showed a significant increase in the Brain regions of rotenone infused rat compared to control. Real Time PCR amplification of DA D1, D2, Bax and ubiquitin carboxy-terminal hydrolase were up regulated in the brain regions of rotenone infused rats compared to control. Gene expression studies of -Synuclien, cGMP and Cyclic AMP response element-binding protein showed a significant down regulation in Rotenone infused rats compared to control. Behavioural studies were carried out to confirm the biochemical and molecular studies.Our study demonstrated that BMC administration alone cannot reverse the above said molecular changes occurring in PD rat. 5-HT and GABA acting through their specific receptors in combination with bone marrow cells play a crucial role in the functional recovery of PD rats. 5-HT, GABA and Bone marrow cells treated PD rats showed significant reversal to control in DA receptor binding and gene expression. 5-HT and GABA have co-mitogenic property. Proliferation and differentiation of cells re-establishing the connections in Parkinson's disease facilitates the functional recovery. Thus, it is evident that 5-HT and GABA along with BMC to rotenone infused rats renders protection against oxidative, related motor and cognitive deficits which makes them clinically significant for cellbased therapy. The BMC transformed to neurons when co-transplanted with 5-HT and GABA which was confirmed with PKH2GL and nestin. These newly formed neurons have functional significance in the therapeutic recovery of Parkinson’s disease.
Resumo:
Parkinson's disease is a chronic progressive neurodegenerative movement disorder characterized by a profound and selective loss of nigrostriatal dopaminergic neurons. Our findings demonstrated that glutamatergic system is impaired during PD. The evaluations of these damages have important implications in understanding the molecular mechanism underlying motor, cognitive and memory deficits in PD. Our results showed a significant increase of glutamate content in the brain regions of 6- OHDA infused rat compared to control. This increased glutamate content caused an increase in glutamatergic and NMDA receptors function. Glutamate receptor subtypes- NMDAR1, NMDA2B and mGluR5 have differential regulatory role in different brain regions during PD. The second messenger studies confirmed that the changes in the receptor levels alter the IP3, cAMP and cGMP content. The alteration in the second messengers level increased the expression of pro-apoptotic factors - Bax and TNF-α, intercellular protein - α-synuclein and reduced the expression of transcription factor - CREB. These neurofunctional variations are the key contributors to motor and cognitive abnormalities associated with PD. Nestin and GFAP expression study confirmed that 5-HT and GABA induced the differentiation and proliferation of the BMC to neurons and glial cells in the SNpc of rats. We also observed that activated astrocytes are playing a crucial role in the proliferation of transplanted BMC which makes them significant for stem cell-based therapy. Our molecular and behavioural results showed that 5-HT and GABA along with BMC potentiates a restorative effect by reversing the alterations in glutamate receptor binding, gene expression and behaviour abnormality that occur during PD. The therapeutic significance in Parkinson’s disease is of prominence.
Resumo:
Background: Prionopathies are characterized by spongiform brain degeneration, myoclonia, dementia, and periodic electroencephalographic (EEG) disturbances. The hallmark of prioniopathies is the presence of an abnormal conformational isoform (PrP(sc)) of the natural cellular prion protein (PrP(c)) encoded by the Prnp gene. Although several roles have been attributed to PrP(c), its putative functions in neuronal excitability are unknown. Although early studies of the behavior of Prnp knockout mice described minor changes, later studies report altered behavior. To date, most functional PrP(c) studies on synaptic plasticity have been performed in vitro. To our knowledge, only one electrophysiological study has been performed in vivo in anesthetized mice, by Curtis and coworkers. They reported no significant differences in paired-pulse facilitation or LTP in the CA1 region after Schaffer collateral/commissural pathway stimulation. Principal Findings: Here we explore the role of PrP(c) expression in neurotransmission and neural excitability using wild-type, Prnp -/- and PrP(c)-overexpressing mice (Tg20 strain). By correlating histopathology with electrophysiology in living behaving mice, we demonstrate that both Prnp -/- mice but, more relevantly Tg20 mice show increased susceptibility to KA, leading to significant cell death in the hippocampus. This finding correlates with enhanced synaptic facilitation in paired-pulse experiments and hippocampal LTP in living behaving mutant mice. Gene expression profiling using Illumina microarrays and Ingenuity pathways analysis showed that 129 genes involved in canonical pathways such as Ubiquitination or Neurotransmission were co-regulated in Prnp -/- and Tg20 mice. Lastly, RT-qPCR of neurotransmission-related genes indicated that subunits of GABA(A) and AMPA-kainate receptors are co-regulated in both Prnp -/- and Tg20 mice. Conclusions/Significance: Present results demonstrate that PrP(c) is necessary for the proper homeostatic functioning of hippocampal circuits, because of its relationships with GABA(A) and AMPA-Kainate neurotransmission. New PrP(c) functions have recently been described, which point to PrP(c) as a target for putative therapies in Alzheimer's disease. However, our results indicate that a "gain of function" strategy in Alzheimer's disease, or a "loss of function" in prionopathies, may impair PrP(c) function, with devastating effects. In conclusion, we believe that present data should be taken into account in the development of future therapies.
Resumo:
Nanoparticulate drug delivery systems provide wide opportunities for solving problems associated with drug stability or disease states and create great expectations in the area of drug delivery (Bosselmann & Williams, 2012). Nanotechnology, in a simple way, explains the technology that deals with one billionth of a meter scale (Ochekpe, et al., 2009). Fewer side effects, poor bioavailability, absorption at intestine, solubility, specific delivery to site of action with good pharmacological efficiency, slow release, degradation of drug and effective therapeutic outcome, are the major challenges faced by most of the drug delivery systems. To a great extent, biopolymer coated drug delivery systems coupled with nanotechnology alleviate the major drawbacks of the common delivery methods. Chitosan, deacetylated chitin, is a copolymer of β-(1, 4) linked glucosamine (deacetylated unit) and N- acetyl glucosamine (acetylated unit) (Radhakumary et al., 2005). Chitosan is biodegradable, non-toxic and bio compatible. Owing to the removal of acetyl moieties that are present in the amine functional groups of chitin, chitosan is readily soluble in aqueous acidic solution. The solubilisation occurs through the protonation of amino groups on the C-2 position of D-glucosamine residues whereby polysaccharide is converted into polycation in acidic media. Chitosan interacts with many active compounds due to the presence of amine group in it. The presence of this active amine group in chitosan was exploited for the interaction with the active molecules in the present study. Nanoparticles of chitosan coupled drugs are utilized for drug delivery in eye, brain, liver, cancer tissues, treatment of spinal cord injury and infections (Sharma et al., 2007; Li, et a., 2009; Paolicelli et al., 2009; Cho et al., 2010). To deliver drugs directly to the intended site of action and to improve pharmacological efficiency by minimizing undesired side effects elsewhere in the body and decrease the long-term use of many drugs, polymeric drug delivery systems can be used (Thatte et al., 2005).
Resumo:
Resumen tomado de la publicaci??n
Resumo:
Ionotropic gamma-amino butyric acid (GABA) receptors composed of heterogeneous molecular subunits are major mediators of inhibitory responses in the adult CNS. Here, we describe a novel ionotropic GABA receptor in mouse cerebellar Purkinje cells (PCs) using agents reported to have increased affinity for rho subunit-containing GABA(C) over other GABA receptors. Exogenous application of the GABA(C)-preferring agonist cis-4-aminocrotonic acid (CACA) evoked whole-cell currents in PCs, whilst equimolar concentrations of GABA evoked larger currents. CACA-evoked currents had a greater sensitivity to the selective GABA(C) antagonist (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) than GABA-evoked currents. Focal application of agonists produced a differential response profile; CACA-evoked currents displayed a much more pronounced attenuation with increasing distance from the PC soma, displayed a slower time-to-peak and exhibited less desensitization than GABA-evoked currents. However, CACA-evoked currents were also completely blocked by bicuculline, a selective agent for GABA(A) receptors. Thus, we describe a population of ionotropic GABA receptors with a mixed GABA(A)/GABA(C) pharmacology. TPMPA reduced inhibitory synaptic transmission at interneurone-Purkinje cell (IN-PC) synapses, causing clear reductions in miniature inhibitory postsynaptic current (mIPSC) amplitude and frequency. Combined application of NO-711 (a selective GABA transporter subtype 1 (GAT-1) antagonist) and SNAP-5114 (a GAT-(2)/3/4 antagonist) induced a tonic GABA conductance in PCs; however, TPMPA had no effect on this current. Immunohistochemical studies suggest that rho subunits are expressed predominantly in PC soma and proximal dendritic compartments with a lower level of expression in more distal dendrites; this selective immunoreactivity contrasted with a more uniform distribution of GABA(A) alpha 1 subunits in PCs. Finally, co-immunoprecipitation studies suggest that rho subunits can form complexes with GABA(A) receptor alpha 1 subunits in the cerebellar cortex. Overall, these data suggest that rho subunits contribute to functional ionotropic receptors that mediate a component of phasic inhibitory GABAergic transmission at IN-PC synapses in the cerebellum.
Resumo:
Extinction following positively reinforced operant conditioning reduces response frequency, at least in part through the aversive or frustrative effects of non-reinforcement. According to J.A. Gray's theory, non-reinforcement activates the behavioural inhibition system which in turn causes anxiety. As predicted, anxiolytic drugs including benzodiazepines affect the operant extinction process. Recent studies have shown that reducing GABA-mediated neurotransmission retards extinction of aversive conditioning. We have shown in a series of studies that anxiolytic compounds that potentiate GABA facilitate extinction of positively reinforced fixed-ratio operant behaviour in C57B1/6 male mice. This effect does not occur in the early stages of extinction, nor is it dependent on cumulative effects of the compound administered. Potentiation of GABA at later stages has the effect of increasing sensitivity to the extinction contingency and facilitates the inhibition of the behaviour that is no longer required. The GABAergic hypnotic, zolpidem, has the same selective effects on operant extinction in this procedure. The effects of zolpidem are not due to sedative action. There is evidence across our series of experiments that different GABA-A subtype receptors are involved in extinction facilitation and anxiolysis. Consequently, this procedure may not be an appropriate model for anxiolytic drug action, but it may be a useful technique for analysing the neural bases of extinction and designing therapeutic interventions in humans where failure to extinguish inappropriate behaviours can lead to pathological conditions such as post-traumatic stress disorder.
Resumo:
A sensação de dor é mediada por diferentes sistemas de transmissão, os quais estão continuamente sendo integrados e modulados por diversos mecanismos neurais, agindo em diferentes períodos de tempo. Para o estudo da dor neuropática, um dos modelos mais empregados é a lesão nervosa periférica, sendo que a maioria desses estudos é realizada em mamíferos. Apesar da ausência de um arranjo laminar, a medula espinal de anfíbios apresenta muitas similaridades anatômicas e funcionais com a dos mamíferos. Por isso, o estudo desses animais pode fornecer subsídios adicionais para compreensão dos mecanismos da transmissão nociceptiva, além de esclarecer os aspectos evolutivos envolvidos na mesma. No presente trabalho foi analisado o padrão de imunorreatividade ao neuropeptídeo Y (NPY), peptídeo relacionado ao gene da calcitonina (CGRP), somatostatina (SOM) e ácido γ-aminobutírico (GABA) em medula espinal lombossacral de rãs Rana catesbeiana em condições basais e após a secção do nervo ciático. Para isso, foram utilizados animais adultos, de ambos os sexos, os quais foram divididos em grupos controle (animais em condições basais) e experimental (animais submetidos à secção do nervo ciático). Para o estudo da imunorreatividade ao NPY, os animais desnervados foram sacrificados 3, 7 e 15 dias após a secção do nervo ciático. Para CGRP, SOM e GABA os intervalos de tempo considerados foram de 3, 5, 8 e 15 dias após a axotomia. A técnica imunoistoquímica utilizada foi a de Sternberger (1979), sendo utilizados anticorpos primários do tipo policlonal nas concentrações de 1:1000 (GABA e neuropeptídeo Y), 1:500 (somatostatina) e 1:100 (CGRP). A imunorreação foi semi-quantificada através de densitometria óptica. A intensidade dos produtos de reação foi comparada entre os lados ipsilateral e contralateral à lesão e com o grupo controle. Os resultados obtidos nos animais controle foram semelhantes aos descritos anteriormente para os anfíbios. A maior intensidade de imunorreação ocorreu na parte dorsal do funículo lateral para todas as substâncias neuroquímicas consideradas. Imunorreatividade ao GABA, NPY e SOM ainda foram observadas ao longo do funículo lateral e no funículo ventral. Na substância cinzenta, o corno dorsal apresentou maior imunorreatividade quando comparado ao ventral, sendo esta uma característica comum entre as substâncias neuroquímicas consideradas no presente estudo. Neurônios bitufted imunorreativos para GABA, NPY e SOM foram detectados na banda mediolateral. No corno ventral, neurônios motores apresentaram imunorreação à SOM, ao CGRP e ao GABA, sendo neste último de fraca intensidade. Após a desnervação periférica não houve variação no padrão de distribuição da imunorreatividade à SOM e ao CGRP. Entretanto, a axotomia causou uma redução significativa na imunorreatividade ao GABA na parte dorsal do funículo lateral no lado ipsilateral à lesão. Essa diminuição foi evidenciada 3 dias após a desnervação, persistindo aos 5, 8 e 15 dias após a secção do nervo ciático. A imunorreatividade ao NPY apresentou inicialmente (3 e 7 dias após a axotomia) um aumento bilateral na intensidade de reação. Porém, 15 dias após a desnervação periférica, houve uma queda na imunorreatividade ao NPY, a qual também foi evidenciada bilateralmente. Esses resultados sugerem o envolvimento das substâncias neuroquímicas abordadas neste estudo no processamento das informações sensoriais de rãs Rana catesbeiana. Todavia, ainda é especulativa a participação das mesmas nos mecanismos de transmissão e codificação da nocicepção nesses animais. Estudos complementares são necessários para o esclarecimento dessas questões. Todavia, pode-se afirmar que o corno dorsal desses animais apresenta uma circuitaria complexa, onde diferentes sistemas de neurotransmissores e/ou neuromoduladores interagem para a modulação dos sinais nociceptivos, semelhante ao que é descrito para os mamíferos.
Resumo:
To investigate the ability of hexanic ethanolic fraction of Rubus brasiliensis Martius (Roseceae), to induce anxiolytic effect and also the possible involvement of the GABA(A)-benzodiazepine receptor complex, male Wistar rats and Swiss mice behaviour were tested in the elevated plus maze (EPM). All the doses of the extract, 50, 100 and 150 mg/kg, administered per gavage (vo), 30 min before the behavioural evaluation, induced an anxiolytic effect expressed by: increased number of entries in and time spent in the open arms and percentage of open arm entries: and decreased number of entries and time spent in the closed arms. The treatment of mice with flumazenil (Ro 15-1788), 0.5, 1.0 and 1.5 mg/kg, i.p., 15-min before the administration of hexanic fraction, 100 mg/kg, vo, blocked the hexanic fraction-induced anxiolytic effect. The LD50 for the hexanic fraction was 1512 mg/kg. In conclusion, it was shown that the hexanic fraction of R. brasiliensis induced an anxiolytic effect in rats and mice. This effect can be attributed to a liposoluble principle with low toxicity which may be acting as an agonist on GABA(A)-benzodiazepine receptor complex. (C) 1998 Elsevier B.V. Ireland Ltd. All rights reserved.
Resumo:
Inhibitory serotonergic and cholecystokinergic mechanisms in the lateral parabrachial nucleus and central GABAergic mechanisms are involved in the regulation of water and NaCl intake. In the present study we investigated if the GABA(A) receptors in the lateral parabrachial nucleus are involved in the control of water, NaCl and food intake in rats. Male Holtzman rats with stainless steel cannulas implanted bilaterally into the lateral parabrachial nucleus were used. Bilateral injections of muscimol (0.2 nmol/0.2 mu l) into the lateral parabrachial nucleus strongly increased 0.3 M NaCl (20.3 +/- 7.2 vs. saline: 2.6 +/- 0.9 ml/180 min) without changing water intake induced by the treatment with the diuretic furosemide combined with low dose of the angiotensin converting enzyme inhibitor captopril s.c. In euhydrated and satiated rats, bilateral lateral parabrachial nucleus injections of muscimol (0.2 and 0.5 nmol/0.2 0) induced 0.3 M NaCl intake (12.1 +/- 6.5 and 32.5 +/- 7.3 ml/180 min, respectively, vs. saline: 0.4 +/- 0.2 ml/180 min) and water intake (5.2 +/- 2.0 and 7.6 +/- 2.8 ml/ 180 min, respectively, vs. saline: 0.8 +/- 0.4 ml/180 min), but no food intake (2 +/- 0.4 g/240 min vs. saline: 1 +/- 0.3 g/240 min). Bilateral lateral parabrachial nucleus injections of the GABAA antagonist bicuculline (1.6 nmol/0.2 mu l) abolished the effects of muscimol (0.5 nmol/0.2 mu l) on 0.3 M NaCl and water intake. Muscimol (0.5 nmol/0.2 mu l) into the lateral parabrachial nucleus also induced a slight ingestion of water (4.2 +/- 1.6 ml/240 min vs. saline: 1.1 +/- 0.3 ml/240 min) when only water was available, a long lasting (for at least 2 h) increase on mean arterial pressure (14 +/- 4 mm Hg, vs. saline: -1 +/- 1 mm Hg) and only a tendency to increase urinary volume and Na+ and K+ renal excretion. Therefore the activation of GABAA receptors in the lateral parabrachial nucleus induces strong NaCl intake, a small ingestion of water and pressor responses, without changes on food intake. (c) 2005 Published by Elsevier Ltd on behalf of IBRO.
Resumo:
Inhibitory mechanisms in the lateral parabrachial nucleus (LPBN) and central GABAergic mechanisms are involved in the regulation of water and NaCl intake. Besides increasing fluid depletion-induced sodium intake, the activation of GABA(A) receptors with muscimol into the LPBN also induces ingestion of 0.3 M NaCl in normonatremic, euhydrated rats. It has been suggested that inhibitory mechanisms activated by osmotic signals are blocked by GABAA receptor activation in the LPBN, thereby increasing hypertonic NaCl intake. Therefore, in the present study we investigated the effects of muscimol injected into the LPBN on water and 0.3 M NaCl intake in hyperosmotic cell-dehydrated rats (rats treated with an intragastric load of 2 M NaCl). Male Wistar rats with stainless steel cannulas implanted bilaterally into the LPBN were used. In euhydrated rats, muscimol (0.5 nmol/0.2 mu l), bilaterally injected into the LPBN, induced ingestion of 0.3 M NaCl (24.6 +/- 7.9 vs. vehicle: 0.5 +/- 0.3 ml/180 min) and water (6.3 +/- 2.1 vs. vehicle: 0.5 +/- 0.3 ml/180 min). One hour after intragastric 2 M NaCl load (2 ml), bilateral injections of muscimol into the LPBN also induced 0.3 M NaCl intake (22.1 +/- 5.2 vs. vehicle: 0.9 +/- 0.8 ml/210 min) and water intake (16.5 +/- 3.6 vs. vehicle: 7.8 +/- 1.8 ml/210 min). The GABAA antagonist bicuculline (0.4 nmol/0.2 mu l) into the LPBN reduced the effect of muscimol on 0.3 M NaCl intake (7.1 +/- 2.1 ml/210 min). Therefore, the activation of GABAA receptors in the LPBN induces ingestion of 0.3 M NaCl by hyperosmotic cell-dehydrated rats, suggesting that plasma levels of renin or osmolarity do not affect sodium intake after the blockade of LPBN inhibitory mechanisms with muscimol. (c) 2007 Elsevier B.V. All rights reserved.