998 resultados para G-banding karyotype
Resumo:
A comparative analysis of G-banded karyotypes was performed for seven species of Chiroptera, representing two families (Phyllostomidae and Molossidae). Despite the differences in diploid and fundamental numbers, extensive homologies between six karyotypes were identified: A . planirostris, P. lineatus, S. lilium, G. soricina, P. hastatus (Phyllostomidae) and M. rufus (Molossidae). Robertsonian rearrangements and pericentric inversions account for the differences between the karyotypes of phyllostomid and molossid species. The homologies and rearrangements observed reinforce the monophiletic origin of phyllostomids and the inclusion of species in different subfamilies. In situ hybridization with genomic DNA revealed considerable conservation of the karyotypes, including C. perspicillata, that did not show G-band homologies with the other species analyzed. For the first time, chromosomal evidence is presented of a common origin for Phyllostomidae and Molossidae.
Resumo:
Ten species of Hyla with 2n = 30 from Brazilian fauna were analysed cytogenetically. Hyla minuta is the unique presenting all bi-armed metacentric or submetacentric chromosomes in the karyotype, therefore, with the highest FN = 60. The remaining species have a variable number of uni-armed telocentric or subtelocentric chromosomes: H. cruzi, H. elianeae, and H. rubicundula with three pairs (FN = 54), H. berthalutzae, H. elegans, H. microps, and H. nana with four pairs (FN = 52), and H. nahdereri and H. sanborni with five pairs (FN = 50). The uni-armed elements are among pairs 5, 6, 7, 11, 14, and 15, which also appeared with metacentric or submetacentric morphology. The remaining chromosome pairs 1, 2, 3, 4, 8, 9, 10, 12, and 13 were never found to be telocentric or subtelocentric. AgNOR patterns are species-specific, the majority of the species exhibiting a single pair with AgNORs, with the exception of H. elegans and H. nana with more than one chromosome pair bearing this cytological marker. C banding was obtained in H. berthalutzae, H. cruzi, H. elegans, H. elianeae, H. microps, H. minuta, H. nahdereri, and H. nana, which showed positively stained centromeric heterochromatin. Our analysis confirms the great karyotypic diversity in the species of Hyla with 2n = 30, with no species sharing identical karyotypes.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Genética - IBILCE
Resumo:
Pós-graduação em Genética - IBILCE
Resumo:
Foram estudados citogeneticamente um total de 30 animais das espécies D. prymnolopha (N=20), D. leporina (N=6), D. fuliginosa (N=1) e Dasyprocta sp. (N=3) (Dasyproctidae, Histricognathi). As preparações cromossômicas foram obtidas do cultivo de sangue periférico, além de medula óssea e baço em D. prymnolopha e D. leporina. O número diplóide foi de 64/65 em todos os exemplares. O cariótipo mostrou similaridade, não sendo detectado, através de coloração convencional de giemsa e de banda G, polimorfismo cromossômico em qualquer uma das espécies estudadas. A distribuição da heterocromatina constitutiva na região pericentromérica de todos os cromossomos foi similar nas quatro espécies. D. prymnolopha, D. leporina e Dasyprocta sp. apresentaram variação no tamanho do bloco heterocromático em um dos homólogos do par A18. D. fuliginosa apresentou a heterocromatina uniformemente distribuída em todos os cromossomos. Não houve variação no padrão das RONs entre as espécies estudadas.
Bandamento em cromossomos de peixes: discussão sobre o conceito de compartimentalização cromossômica
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Unlike the X chromosome, the mammalian Y chromosome undergoes evolutionary decay resulting in small size. This sex chromosomal heteromorphism, observed in most species of the fossorial rodent Ctenomys, contrasts with the medium-sized, homomorphic acrocentric sex chromosomes of closely related C. maulinus and C. sp. To characterize the sequence composition of these chromosomes, fluorescent banding, self-genomic in situ hybridization, and fluorescent in situ hybridization with an X painting probe were performed on mitotic and meiotic plates. High molecular homology between the sex chromosomes was detected on mitotic material as well as on meiotic plates immunodetected with anti-SYCP3 and anti-gamma H2AX. The Y chromosome is euchromatic, poor in repetitive sequences and differs from the X by the loss of a block of pericentromeric chromatin. Inferred from the G-banding pattern, an inversion and the concomitant prevention of recombination in a large asynaptic region seems to be crucial for meiotic X chromosome inactivation. These peculiar findings together with the homomorphism of Ctenomys sex chromosomes are discussed in the light of the regular purge that counteracts Muller's ratchet and the probable mechanisms accounting for their origin and molecular homology. (C) 2014 S. Karger AG, Basel
Resumo:
We describe a case of retinoblastoma with an atypical presentation and previously unreported cytogenetic aberrations. A 19-month-old girl with left intraocular retinoblastoma was treated with enucleation and chemotherapy. The disease showed aggressive evolution within a short period between diagnosis and relapse. Eight months after diagnosis, a new large tumor was present in the orbit of the right eye, with diffuse bone pain, pancytopenia and diffuse infiltration into the bone marrow and the central nervous system. The child did not respond to treatment and died. Cytogenetic studies made with G-banding, FISH and SKY analysis showed chromosomal aberrations commonly associated with retinoblastoma, including del(13q), i(6+1, and monosomy 16, along with others that had not been reported previously, including dup(5q), dic(15;22) and add(14q). The new chromosomal aberrations may be related to the aggressiveness of the disease in this case.
Resumo:
To investigate the hypothesis that increased malignant potential correlates with increased levels of genetic instability, the following parameters of instability were measured: (1) spontaneous mutation rates for ouabain resistance in murine cell lines of different malignant potentials, (2) the background prevalence of 6-thioguanine (6-TG) resistance in clone 4 (highly metastatic) and clone 19 (poorly metastatic) of the K1735 murine melanoma, (3) the prevalence of ouabain resistant variants in three murine cell lines and their variants after exposure to the mutagen MNNG, (4) the rate of generation of major karyotypic abnormalities in B16 F1 (poorly metastatic) and B16 F10 (highly metastatic) murine melanoma, and (5) analysis of the G-banded karyotypes of cloned B16 F1 and B16 F10 melanoma.^ No correlation of increased spontaneous mutation rates with increased malignant potential was found in repeated experiments with three murine cell lines and their variants of different malignant potential. The background prevalence of g-TG resistance was not significantly different for the poorly and highly metastatic clones of K1735 melanoma. The studies with MNNG-induced mutation showed no increased sensitivity of the highly metastatic variants of the three murine cell lines to mutagenesis. Neither did the rate of generation of major karyotypic abnormalities correlate with malignant potential. However, certain karyotypic differences were demonstrated after G-banding of the B16 F1 and F10 melanomas.^ One hypothesis which is consistent with these results is that the rate of generation of genetic abnormalities need not be strongly related to the degree of malignant potential. An increased prevalence of genetic changes may merely reflect the accumulation of abnormalities while their rate of production remains constant. The presence of specific nonrandom changes likely is the main determinant of malignant potential rather than the rate of production of random changes. ^
Resumo:
Microcell-mediated chromosome transfer is a method of gene transfer which allows for the introduction of single or small groups of intact chromosomes into recipient host cells. Microcell transfer was first performed by Fournier and Ruddle using rodent microcells and various recipient cells. Expansion of this technology to include the transfer of normal human genetic material has been hindered because large micronucleate populations from diploid human cells have been unobtainable. This dissertation research describes, however, the methods for production of micronuclei in 40-60% of normal human fibroblasts. Once micronucleate cells were obtained, they were enucleated by centrifugation in the presence of Cytochalasin B; the microcells were then purified and fused to recipient mouse (LMTK('-)) cells using a new fusion protocol employing polyethylene glycol containing phytohemagglutinin. Microcell clones were isolated from the HAT selection system. Alkaline Giemsa staining performed on these hybrids indicated the presence of a single human chromosome in each of seven microcell clones from three separate experiments. That chromosome was further identified by G banding analysis to be human chromosome #17, which codes for thymidine kinase. The time course for production of these hybrids from fusion to karyotypic analysis was 6 weeks. The viability of the transferred human genetic material was assessed by electrophoretic isozyme analysis.^ Subsequent experiments were performed in an attempt to optimize the transfer frequency for the thymidine kinase gene using this system. Results indicated that the frequency could be increased from < 1 x 10('-6) in initial experiments to 2 x 10('-5) in the latest experiment. Analyses were also conducted to determine the number of chromosomes per isolated microcell as well as to investigate the stability of the transferred human chromosome in the mouse genome. ^
Resumo:
This case control study was conducted to assess the association between lung cancer risk, mutagen sensitivity (a marker of cancer susceptibility), and a putative lung carcinogen, wood dust exposure. There were 165 cases (98 African-Americans, 67 Mexican-Americans) with newly diagnosed, previously untreated lung cancer, and 239 controls, frequency-matched on age, sex, and ethnicity.^ Mutagen sensitivity ($\ge$1 break/cell) was associated with a statistically significant elevated risk for lung cancer (odds ratio (OR) = 4.1, 95% confidence limits (CL) = 2.3,7.2). Wood dust exposure was also a significant predictor of risk (OR = 2.8, 95% CL = 1.2,6.6) after controlling for smoking and mutagen sensitivity. When stratified by ethnicity, wood dust exposure was a significant risk factor for African-Americans (OR = 4.0, 95% CL = 1.4,11.5), but not for Mexican-Americans (OR = 1.5, 95% CL = 0.3,7.1). Stratified analysis suggested a greater than multiplicative interaction between wood dust exposure and both mutagen sensitivity and smoking.^ The cases had significantly more breaks on chromosomes 4 and 5 than the controls did with ORs of 4.9 (95% CL = 2.0, 11.7) and 3.9 (95% CL = 1.6, 9.3), respectively. Breaks at 4p14, 4q27, 4q31, 5q21-22, 5q31, and 5q33 were significantly more common in lung cancer patients than in controls. Lung cancer risk had a dose-response relationship with breaks on chromosomes 4 and 5. Cigarette smoking had a strong interaction with breaks on chromosomes 2, 4, and 5.^ In a molecular cytogenetic study, using chromosome painting and G-banding, we showed that: (1) the proportion of chromosome 5 abnormalities surviving as chromosome-type aberrations remained significantly higher in cells of lung cancer cases (14%) than in controls (5%) (P $<$ 0.001). However, no significant differences were detected in chromosome 4 abnormalities between cases and controls; (2) the proportion of chromosome 5q13-22 abnormalities was 5.3% in the cases and 0.7% in the controls (P $<$ 0.001). 5q13-22 regions represented 40% of all abnormalities on chromosome 5 in the cases and only 14% in the controls.^ This study suggests that mutagen sensitivity, wood dust exposure, and cigarette smoking were independent risk factors for lung cancer, and the susceptibility of particular chromosome loci to mutagenic damage may be a genetic marker for specific types of lung cancer. ^
Resumo:
Cytogenetic analysis of Astylus antis using mitotic and meiotic cells was performed to characterize the haploid and diploid numbers, sex determination system, chromosome morphology, constitutive heterochromatin distribution pattern and chromosomes carrying nucleolus organizer regions (NORs). Analysis of spermatogonial metaphase cells revealed the diploid number 2n = 18, with mostly metacentric chromosomes. Metaphase I cells exhibited 2n = 8II+Xyp and a parachute configuration of the sex chromosomes. Spermatogonial metaphase cells submitted to C-banding showed the presence of small dots of constitutive heterochromatin in the centromeric regions of nearly all the autosomes and on the short arm of the X chromosome (Xp), as well as an additional band on one of the arms of pair 1. Mitotic cells submitted to double staining with base-specific fluorochromes (DAPI-CMA3) revealed no regions rich in A+T or G+C sequences. Analysis of spermatogonial mitotic cells after sequential Giemsa/AgNO3 staining did not reveal any specific mark on the chromosomes. Meiotic metaphase I cells stained with silver nitrate revealed a strong impregnation associated to the sex chromosomes, and in situ hybridization with an 18S rDNA probe showed ribosomal cistrons in an autosomal bivalent.
Resumo:
Dysploidy and polyploidy are well documented in the large genus Centaurea, especially in sect. Acrocentron and in a small group of species from the Iberian Peninsula described as sect. Chamaecyanus, closely related to Acrocentron. We have explored two interesting cases of polyploid series in both sections: the polyploid series of Centaurea toletana in sect. Chamaecyanus and the series of C. ornata group in sect. Acrocentron. We have carried out a karyological study using both classic karyotype analyses and chromosome banding with fluorochromes.
Resumo:
Chromosome studies were performed in V. champinii, V. cinerea, V. girdiana, V. labrusca, V. rotundifolia, V. rupestris and V. vinifera with the purpose of species characterization using chromosome morphometric data and NOR banding. A median ideogram was obtained for each species. The karyotype formula obtained varied from 7m + 12sm to 9m + 11sm. The species showed moderate chromosome asymmetry values according to TF% form, Stebbins, Romero Zarco and Paszko indices. V. champinii and V. girdiana were apart from the other species by CVcl and CVci graphic representation and also formed a group apart in the dendrogram based on Euclidian distances. The chromosome pair number 3 harbors the secondary constriction and a satellite segment in all species analyzed with Giemsa staining and it may be the same observed after NOR banding technique. It seems that the process of speciation in the North American Euvitis species studied involved some discrete changes in chromosome morphometry which have been reflected in the asymmetry index.