829 resultados para Fuzzy system


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This work proposes to adjust the Notification Oriented Paradigm (NOP) so that it provides support to fuzzy concepts. NOP is inspired by elements of imperative and declarative paradigms, seeking to solve some of the drawbacks of both. By decomposing an application into a network of smaller computational entities that are executed only when necessary, NOP eliminates the need to perform unnecessary computations and helps to achieve better logical-causal uncoupling, facilitating code reuse and application distribution over multiple processors or machines. In addition, NOP allows to express the logical-causal knowledge at a high level of abstraction, through rules in IF-THEN format. Fuzzy systems, in turn, perform logical inferences on causal knowledge bases (IF-THEN rules) that can deal with problems involving uncertainty. Since PON uses IF-THEN rules in an alternative way, reducing redundant evaluations and providing better decoupling, this research has been carried out to identify, propose and evaluate the necessary changes to be made on NOP allowing to be used in the development of fuzzy systems. After that, two fully usable materializations were created: a C++ framework, and a complete programming language (LingPONFuzzy) that provide support to fuzzy inference systems. From there study cases have been created and several tests cases were conducted, in order to validate the proposed solution. The test results have shown a significant reduction in the number of rules evaluated in comparison to a fuzzy system developed using conventional tools (frameworks), which could represent an improvement in performance of the applications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A lógica fuzzy admite infinitos valores lógicos intermediários entre o falso e o verdadeiro. Com esse princípio, foi elaborado neste trabalho um sistema baseado em regras fuzzy, que indicam o índice de massa corporal de animais ruminantes com objetivo de obter o melhor momento para o abate. O sistema fuzzy desenvolvido teve como entradas as variáveis massa e altura, e a saída um novo índice de massa corporal, denominado Índice de Massa Corporal Fuzzy (IMC Fuzzy), que poderá servir como um sistema de detecção do momento de abate de bovinos, comparando-os entre si através das variáveis linguísticas )Muito BaixaM, ,BaixaB, ,MédiaM, ,AltaA e Muito AltaM. Para a demonstração e aplicação da utilização deste sistema fuzzy, foi feita uma análise de 147 vacas da raça Nelore, determinando os valores do IMC Fuzzy para cada animal e indicando a situação de massa corpórea de todo o rebanho. A validação realizada do sistema foi baseado em uma análise estatística, utilizando o coeficiente de correlação de Pearson 0,923, representando alta correlação positiva e indicando que o método proposto está adequado. Desta forma, o presente método possibilita a avaliação do rebanho, comparando cada animal do rebanho com seus pares do grupo, fornecendo desta forma um método quantitativo de tomada de decisão para o pecuarista. Também é possível concluir que o presente trabalho estabeleceu um método computacional baseado na lógica fuzzy capaz de imitar parte do raciocínio humano e interpretar o índice de massa corporal de qualquer tipo de espécie bovina e em qualquer região do País.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A fuzzy system is developed using a linearized performance model of the gas turbine engine for performing gas turbine fault isolation from noisy measurements. By using a priori information about measurement uncertainties and through design variable linking, the design of the fuzzy system is posed as an optimization problem with low number of design variables which can be solved using the genetic algorithm in considerably low amount of computer time. The faults modeled are module faults in five modules: fan, low pressure compressor, high pressure compressor, high pressure turbine and low pressure turbine. The measurements used are deviations in exhaust gas temperature, low rotor speed, high rotor speed and fuel flow from a base line 'good engine'. The genetic fuzzy system (GFS) allows rapid development of the rule base if the fault signatures and measurement uncertainties change which happens for different engines and airlines. In addition, the genetic fuzzy system reduces the human effort needed in the trial and error process used to design the fuzzy system and makes the development of such a system easier and faster. A radial basis function neural network (RBFNN) is also used to preprocess the measurements before fault isolation. The RBFNN shows significant noise reduction and when combined with the GFS leads to a diagnostic system that is highly robust to the presence of noise in data. Showing the advantage of using a soft computing approach for gas turbine diagnostics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Um problema que as empresas distribuidoras de energia elétrica convivem são as quedas repentinas no fornecimento, causando inúmeros prejuízos tanto para essas empresas quanto para seus consumidores. Essa dissertação apresentará uma ferramenta que utilizará conhecimentos de sistemas de informações geográficas junto com o uso de inferência nebulosa para orientar a disposição de veículos híbridos (elétricos e à combustão) que podem operar como mini-usinas elétricas no abastecimento de localidades que esteja necessitando de energia em um determinado momento. Para isso, será levantada uma base de dados com características dos veículos híbridos e locais necessitados, dados esses que alimentarão um sistema nebuloso agregado à ferramenta MapServer e a um SIG (Sistema de Informações Geográficas) para, dessa forma, mostrar como saída do sistema qual veículo estará mais apto naquele instante para abastecer o local da demanda de energia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O objetivo deste trabalho é avaliar os riscos de ocorrências de intrusos em um sistema de computação em nuvem para sistemas distribuídos utilizando lógica nebulosa. A computação em nuvem é um tema que vem sendo bastante abordado e vem alavancando discussões calorosas, tanto na comunidade acadêmica quanto em palestras profissionais. Embora essa tecnologia esteja ganhando mercado, alguns estudiosos encontram-se céticos afirmando que ainda é cedo para se tirar conclusões. Isto se deve principalmente por causa de um fator crítico, que é a segurança dos dados armazenados na nuvem. Para esta dissertação, foi elaborado um sistema distribuído escrito em Java com a finalidade de controlar um processo de desenvolvimento colaborativo de software na nuvem, o qual serviu de estudo de caso para avaliar a abordagem de detecção de intrusos proposta. Este ambiente foi construído com cinco máquinas (sendo quatro máquinas virtuais e uma máquina real). Foram criados dois sistemas de inferência nebulosos, para análise de problemas na rede de segurança implementados em Java, no ambiente distribuído. Foram realizados diversos testes com o intuito de verificar o funcionamento da aplicação, apresentando um resultado satisfatório dentro dessa metodologia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este trabalho propõe-se a descrever uma metodologia para avaliação do sistema de educação fundamental do Estado do Rio de Janeiro, que utiliza a teoria dos conjuntos nebulosos como base, no processo de inferência para geração do Indicador Avaliação do Sistema Educacional (IASE). A base de dados utilizada para criação do indicador IASE foi extraída de dados obtidos do Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira (INEP). Em seguida, os resultados obtidos são apresentados em um Sistema de informação Geográfica (SIG) possibilitando compreender a correlação de valores alfanuméricos e espacial das informações geradas no sistema nebuloso, de modo apoiar a tomada de decisão das ações governamentais no setor.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ao se realizar estudo em qualquer área do conhecimento, quanto mais dados se dispuser, maior a dificuldade de se extrair conhecimento útil deste banco de dados. A finalidade deste trabalho é apresentar algumas ferramentas ditas inteligentes, de extração de conhecimento destes grandes repositórios de dados. Apesar de ter várias conotações, neste trabalho, irá se entender extração de conhecimento dos repositórios de dados a ocorrência combinada de alguns dados com freqüência e confiabilidade que se consideram interessantes, ou seja, na medida e que determinado dado ou conjunto de dados aparece no repositório de dados, em freqüência considerada razoável, outro dado ou conjunto de dados irá aparecer. Executada sobre repositórios de dados referentes a informações georreferenciadas dos alunos da UERJ (Universidade do Estado do Rio de Janeiro), irá se analisar os resultados de duas ferramentas de extração de dados, bem como apresentar possibilidades de otimização computacional destas ferramentas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Darwinian Particle Swarm Optimization (DPSO) is an evolutionary algorithm that extends the Particle Swarm Optimization using natural selection to enhance the ability to escape from sub-optimal solutions. An extension of the DPSO to multi-robot applications has been recently proposed and denoted as Robotic Darwinian PSO (RDPSO), benefiting from the dynamical partitioning of the whole population of robots, hence decreasing the amount of required information exchange among robots. This paper further extends the previously proposed algorithm adapting the behavior of robots based on a set of context-based evaluation metrics. Those metrics are then used as inputs of a fuzzy system so as to systematically adjust the RDPSO parameters (i.e., outputs of the fuzzy system), thus improving its convergence rate, susceptibility to obstacles and communication constraints. The adapted RDPSO is evaluated in groups of physical robots, being further explored using larger populations of simulated mobile robots within a larger scenario.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El test de circuits és una fase del procés de producció que cada vegada pren més importància quan es desenvolupa un nou producte. Les tècniques de test i diagnosi per a circuits digitals han estat desenvolupades i automatitzades amb èxit, mentre que aquest no és encara el cas dels circuits analògics. D'entre tots els mètodes proposats per diagnosticar circuits analògics els més utilitzats són els diccionaris de falles. En aquesta tesi se'n descriuen alguns, tot analitzant-ne els seus avantatges i inconvenients. Durant aquests últims anys, les tècniques d'Intel·ligència Artificial han esdevingut un dels camps de recerca més importants per a la diagnosi de falles. Aquesta tesi desenvolupa dues d'aquestes tècniques per tal de cobrir algunes de les mancances que presenten els diccionaris de falles. La primera proposta es basa en construir un sistema fuzzy com a eina per identificar. Els resultats obtinguts son força bons, ja que s'aconsegueix localitzar la falla en un elevat tant percent dels casos. Per altra banda, el percentatge d'encerts no és prou bo quan a més a més s'intenta esbrinar la desviació. Com que els diccionaris de falles es poden veure com una aproximació simplificada al Raonament Basat en Casos (CBR), la segona proposta fa una extensió dels diccionaris de falles cap a un sistema CBR. El propòsit no és donar una solució general del problema sinó contribuir amb una nova metodologia. Aquesta consisteix en millorar la diagnosis dels diccionaris de falles mitjançant l'addició i l'adaptació dels nous casos per tal d'esdevenir un sistema de Raonament Basat en Casos. Es descriu l'estructura de la base de casos així com les tasques d'extracció, de reutilització, de revisió i de retenció, fent èmfasi al procés d'aprenentatge. En el transcurs del text s'utilitzen diversos circuits per mostrar exemples dels mètodes de test descrits, però en particular el filtre biquadràtic és l'utilitzat per provar les metodologies plantejades, ja que és un dels benchmarks proposats en el context dels circuits analògics. Les falles considerades son paramètriques, permanents, independents i simples, encara que la metodologia pot ser fàcilment extrapolable per a la diagnosi de falles múltiples i catastròfiques. El mètode es centra en el test dels components passius, encara que també es podria extendre per a falles en els actius.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Artificial Intelligence techniques are applied to improve performance of a simulated oil distillation system. The chosen system was a debutanizer column. At this process, the feed, which comes to the column, is segmented by heating. The lightest components become steams, by forming the LPG (Liquefied Petroleum Gas). The others components, C5+, continue liquid. In the composition of the LPG, ideally, we have only propane and butanes, but, in practice, there are contaminants, for example, pentanes. The objective of this work is to control pentane amount in LPG, by means of intelligent set points (SP s) determination for PID controllers that are present in original instrumentation (regulatory control) of the column. A fuzzy system will be responsible for adjusting the SP's, driven by the comparison between the molar fraction of the pentane present in the output of the plant (LPG) and the desired amount. However, the molar fraction of pentane is difficult to measure on-line, due to constraints such as: long intervals of measurement, high reliability and low cost. Therefore, an inference system was used, based on a multilayer neural network, to infer the pentane molar fraction through secondary variables of the column. Finally, the results shown that the proposed control system were able to control the value of pentane molar fraction under different operational situations

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A neuro-fuzzy system consists of two or more control techniques in only one structure. The main characteristic of this structure is joining one or more good aspects from each technique to make a hybrid controller. This controller can be based in Fuzzy systems, artificial Neural Networks, Genetics Algorithms or rein forced learning techniques. Neuro-fuzzy systems have been shown as a promising technique in industrial applications. Two models of neuro-fuzzy systems were developed, an ANFIS model and a NEFCON model. Both models were applied to control a ball and beam system and they had their results and needed changes commented. Choose of inputs to controllers and the algorithms used to learning, among other information about the hybrid systems, were commented. The results show the changes in structure after learning and the conditions to use each one controller based on theirs characteristics

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work presents the design and construction of an X-Y table of two degrees of freedom, as well as the development of a fuzzy system for its position and trajectory control. The table is composed of two bases that move perpendicularly to each other in the horizontal plane, and are driven by two DC motors. Base position is detected by position sensors attached to the motor axes. A data acquisition board performs the interface between a laptop and the plant. The fuzzy system algorithm was implemented in LabVIEW® programming environment that processes the sensors signals and determines the control variables values that drive the motors. Experimental results using position reference signals (step type signal) and straight and circular paths reference signals are presented to demonstrate the dynamic behavior of fuzzy system

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study aims at the design, development and performance evaluation of a flat platform to capture incident solar radiation. The design and implementation of a fuzzy system for the efficient control of the solar tracking movement of the platform are also presented

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The development of an offshore field demands knowledge of many experts to choose the different components of an offshore production system. All the specialized parts of this knowledge are intrinsically related. The aim of this paper is to use Fuzzy Sets and knowledge-based systems to describe and formalize the phases of development of an offshore production system project, in order to share and to manage the required knowledge for carrying out a project, while at the same time proposing alternatives for the oil field configuration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esta tese enfoca o estudo de métodos para compensação de harmônicos em sistemas de energia elétrica e aborda diversos aspectos relacionados à presença de harmônicos nos mesmos, como a apresentação de conceitos e definições em sistemas não-senoidais e estratégias de compensação de potência. Enfatiza-se neste estudo, exemplificado por meio de medições e simulações realizadas, a influência da forma de onda de alimentação sobre cargas não-lineares; a interação harmônica entre a tensão de suprimento e a corrente das cargas, devido à impedância série do sistema; e a influência mútua entre cargas não-lineares em paralelo, como possível forma de atenuação de harmônicos. Para simular e predizer o impacto causado por cargas não-lineares em um sistema, assim como a implementação de ações para mitigar esses impactos, visando à melhoria da qualidade da energia, é necessário o conhecimento das respostas das mesmas. Como produto do presente trabalho, destacam-se as técnicas desenvolvidas para a modelagem de cargas nãolineares sob diferentes condições de alimentação, em especial o uso de técnicas de inteligência computacional, como o sistema neuro-fuzzy e as redes neurais artificiais; assim como o emprego da série de Volterra para predição do comportamento das cargas.