859 resultados para Fuzzy c-means algorithm


Relevância:

100.00% 100.00%

Publicador:

Resumo:

LEÃO, Adriano de Castro; DÓRIA NETO, Adrião Duarte; SOUSA, Maria Bernardete Cordeiro de. New developmental stages for common marmosets (Callithrix jacchus) using mass and age variables obtained by K-means algorithm and self-organizing maps (SOM). Computers in Biology and Medicine, v. 39, p. 853-859, 2009

Relevância:

100.00% 100.00%

Publicador:

Resumo:

LEÃO, Adriano de Castro; DÓRIA NETO, Adrião Duarte; SOUSA, Maria Bernardete Cordeiro de. New developmental stages for common marmosets (Callithrix jacchus) using mass and age variables obtained by K-means algorithm and self-organizing maps (SOM). Computers in Biology and Medicine, v. 39, p. 853-859, 2009

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper an approach to extreme event control in wastewater treatment plant operation by use of automatic supervisory control is discussed. The framework presented is based on the fact that different operational conditions manifest themselves as clusters in a multivariate measurement space. These clusters are identified and linked to specific and corresponding events by use of principal component analysis and fuzzy c-means clustering. A reduced system model is assigned to each type of extreme event and used to calculate appropriate local controller set points. In earlier work we have shown that this approach is applicable to wastewater treatment control using look-up tables to determine current set points. In this work we focus on the automatic determination of appropriate set points by use of steady state and dynamic predictions. The performance of a relatively simple steady-state supervisory controller is compared with that of a model predictive supervisory controller. Also, a look-up table approach is included in the comparison, as it provides a simple and robust alternative to the steady-state and model predictive controllers, The methodology is illustrated in a simulation study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In an earlier investigation (Burger et al., 2000) five sediment cores near the RodriguesTriple Junction in the Indian Ocean were studied applying classical statistical methods(fuzzy c-means clustering, linear mixing model, principal component analysis) for theextraction of endmembers and evaluating the spatial and temporal variation ofgeochemical signals. Three main factors of sedimentation were expected by the marinegeologists: a volcano-genetic, a hydro-hydrothermal and an ultra-basic factor. Thedisplay of fuzzy membership values and/or factor scores versus depth providedconsistent results for two factors only; the ultra-basic component could not beidentified. The reason for this may be that only traditional statistical methods wereapplied, i.e. the untransformed components were used and the cosine-theta coefficient assimilarity measure.During the last decade considerable progress in compositional data analysis was madeand many case studies were published using new tools for exploratory analysis of thesedata. Therefore it makes sense to check if the application of suitable data transformations,reduction of the D-part simplex to two or three factors and visualinterpretation of the factor scores would lead to a revision of earlier results and toanswers to open questions . In this paper we follow the lines of a paper of R. Tolosana-Delgado et al. (2005) starting with a problem-oriented interpretation of the biplotscattergram, extracting compositional factors, ilr-transformation of the components andvisualization of the factor scores in a spatial context: The compositional factors will beplotted versus depth (time) of the core samples in order to facilitate the identification ofthe expected sources of the sedimentary process.Kew words: compositional data analysis, biplot, deep sea sediments

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O objetivo deste trabalho foi avaliar o potencial da espectroscopia de reflectância no VIS-NIR-SWIR, para a caracterização granulométrica de amostras de solos de diferentes classes texturais, e obter modelos de predição dos teores de argila, silte e areia no solo. Utilizou-se um conjunto de amostras representativas de Latossolos e Argissolo de cinco locais do Estado do Mato Grosso do Sul. Os espectros do visível e do infravermelho próximo ao infravermelho de ondas curtas (de 350 a 2.500 nm) das amostras foram obtidos e analisados. Empregaram-se a análise de componentes principais (ACP), agrupamento por "fuzzy c-means", regressão logística multinomial (RLM) e regressão por mínimos quadrados parciais. Espectros característicos para as diferentes classes texturais e a segregação de amostras de classes texturais e de locais de coleta com características distintas, por meio da ACP, "fuzzy c-means" e RLM, mostram o potencial semiquantitativo dos dados de reflectância no VIS-NIR-SWIR. Obteve-se quantificação satisfatória quanto à argila (R²=0,92, RPD=3,59), ao silte (R²=0,80, RPD=2,15) e à areia (R²=0,87, RPD=2,62). As técnicas de espectroscopia de reflectância podem auxiliar na determinação da textura e da variabilidade espacial do solo com metodologias semiquantitativas ou quantitativas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tässä työssä raportoidaan hybridihitsauksesta otettujen suurnopeuskuvasarjojen automaattisen analyysijärjestelmän kehittäminen.Järjestelmän tarkoitus oli tuottaa tietoa, joka avustaisi analysoijaa arvioimaan kuvatun hitsausprosessin laatua. Tutkimus keskittyi valokaaren taajuuden säännöllisyyden ja lisäainepisaroiden lentosuuntien mittaamiseen. Valokaaria havaittiin kuvasarjoista sumean c-means-klusterointimenetelmän avullaja perättäisten valokaarien välistä aikaväliä käytettiin valokaaren taajuuden säännöllisyyden mittarina. Pisaroita paikannettiin menetelmällä, jossa yhdistyi pääkomponenttianalyysi ja tukivektoriluokitin. Kalman-suodinta käytettiin tuottamaan arvioita pisaroiden lentosuunnista ja nopeuksista. Lentosuunnanmääritysmenetelmä luokitteli pisarat niiden arvioitujen lentosuuntien perusteella. Järjestelmän kehittämiseen käytettävissä olleet kuvasarjat poikkesivat merkittävästi toisistaan kuvanlaadun ja pisaroiden ulkomuodon osalta, johtuen eroista kuvaus- ja hitsausprosesseissa. Analyysijärjestelmä kehitettiin toimimaan pienellä osajoukolla kuvasarjoja, joissa oli tietynlainen kuvaus- ja hitsausprosessi ja joiden kuvanlaatu ja pisaroiden ulkomuoto olivat samankaltaisia, mutta järjestelmää testattiin myös osajoukon ulkopuolisilla kuvasarjoilla. Testitulokset osoittivat, että lentosuunnanmääritystarkkuus oli kohtuullisen suuri osajoukonsisällä ja pieni muissa kuvasarjoissa. Valokaaren taajuuden säännöllisyyden määritys oli tarkka useammassa kuvasarjassa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Naïvement perçu, le processus d’évolution est une succession d’événements de duplication et de mutations graduelles dans le génome qui mènent à des changements dans les fonctions et les interactions du protéome. La famille des hydrolases de guanosine triphosphate (GTPases) similaire à Ras constitue un bon modèle de travail afin de comprendre ce phénomène fondamental, car cette famille de protéines contient un nombre limité d’éléments qui diffèrent en fonctionnalité et en interactions. Globalement, nous désirons comprendre comment les mutations singulières au niveau des GTPases affectent la morphologie des cellules ainsi que leur degré d’impact sur les populations asynchrones. Mon travail de maîtrise vise à classifier de manière significative différents phénotypes de la levure Saccaromyces cerevisiae via l’analyse de plusieurs critères morphologiques de souches exprimant des GTPases mutées et natives. Notre approche à base de microscopie et d’analyses bioinformatique des images DIC (microscopie d’interférence différentielle de contraste) permet de distinguer les phénotypes propres aux cellules natives et aux mutants. L’emploi de cette méthode a permis une détection automatisée et une caractérisation des phénotypes mutants associés à la sur-expression de GTPases constitutivement actives. Les mutants de GTPases constitutivement actifs Cdc42 Q61L, Rho5 Q91H, Ras1 Q68L et Rsr1 G12V ont été analysés avec succès. En effet, l’implémentation de différents algorithmes de partitionnement, permet d’analyser des données qui combinent les mesures morphologiques de population native et mutantes. Nos résultats démontrent que l’algorithme Fuzzy C-Means performe un partitionnement efficace des cellules natives ou mutantes, où les différents types de cellules sont classifiés en fonction de plusieurs facteurs de formes cellulaires obtenus à partir des images DIC. Cette analyse démontre que les mutations Cdc42 Q61L, Rho5 Q91H, Ras1 Q68L et Rsr1 G12V induisent respectivement des phénotypes amorphe, allongé, rond et large qui sont représentés par des vecteurs de facteurs de forme distincts. Ces distinctions sont observées avec différentes proportions (morphologie mutante / morphologie native) dans les populations de mutants. Le développement de nouvelles méthodes automatisées d’analyse morphologique des cellules natives et mutantes s’avère extrêmement utile pour l’étude de la famille des GTPases ainsi que des résidus spécifiques qui dictent leurs fonctions et réseau d’interaction. Nous pouvons maintenant envisager de produire des mutants de GTPases qui inversent leur fonction en ciblant des résidus divergents. La substitution fonctionnelle est ensuite détectée au niveau morphologique grâce à notre nouvelle stratégie quantitative. Ce type d’analyse peut également être transposé à d’autres familles de protéines et contribuer de manière significative au domaine de la biologie évolutive.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Efficient optic disc segmentation is an important task in automated retinal screening. For the same reason optic disc detection is fundamental for medical references and is important for the retinal image analysis application. The most difficult problem of optic disc extraction is to locate the region of interest. Moreover it is a time consuming task. This paper tries to overcome this barrier by presenting an automated method for optic disc boundary extraction using Fuzzy C Means combined with thresholding. The discs determined by the new method agree relatively well with those determined by the experts. The present method has been validated on a data set of 110 colour fundus images from DRION database, and has obtained promising results. The performance of the system is evaluated using the difference in horizontal and vertical diameters of the obtained disc boundary and that of the ground truth obtained from two expert ophthalmologists. For the 25 test images selected from the 110 colour fundus images, the Pearson correlation of the ground truth diameters with the detected diameters by the new method are 0.946 and 0.958 and, 0.94 and 0.974 respectively. From the scatter plot, it is shown that the ground truth and detected diameters have a high positive correlation. This computerized analysis of optic disc is very useful for the diagnosis of retinal diseases

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In an earlier investigation (Burger et al., 2000) five sediment cores near the Rodrigues Triple Junction in the Indian Ocean were studied applying classical statistical methods (fuzzy c-means clustering, linear mixing model, principal component analysis) for the extraction of endmembers and evaluating the spatial and temporal variation of geochemical signals. Three main factors of sedimentation were expected by the marine geologists: a volcano-genetic, a hydro-hydrothermal and an ultra-basic factor. The display of fuzzy membership values and/or factor scores versus depth provided consistent results for two factors only; the ultra-basic component could not be identified. The reason for this may be that only traditional statistical methods were applied, i.e. the untransformed components were used and the cosine-theta coefficient as similarity measure. During the last decade considerable progress in compositional data analysis was made and many case studies were published using new tools for exploratory analysis of these data. Therefore it makes sense to check if the application of suitable data transformations, reduction of the D-part simplex to two or three factors and visual interpretation of the factor scores would lead to a revision of earlier results and to answers to open questions . In this paper we follow the lines of a paper of R. Tolosana- Delgado et al. (2005) starting with a problem-oriented interpretation of the biplot scattergram, extracting compositional factors, ilr-transformation of the components and visualization of the factor scores in a spatial context: The compositional factors will be plotted versus depth (time) of the core samples in order to facilitate the identification of the expected sources of the sedimentary process. Kew words: compositional data analysis, biplot, deep sea sediments

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a family of well-known external clustering validity indexes to measure the degree of compatibility or similarity between two hard partitions of a given data set, including partitions with different numbers of categories. A unified, fully equivalent set-theoretic formulation for an important class of such indexes was derived and extended to the fuzzy domain in a previous work by the author [Campello, R.J.G.B., 2007. A fuzzy extension of the Rand index and other related indexes for clustering and classification assessment. Pattern Recognition Lett., 28, 833-841]. However, the proposed fuzzy set-theoretic formulation is not valid as a general approach for comparing two fuzzy partitions of data. Instead, it is an approach for comparing a fuzzy partition against a hard referential partition of the data into mutually disjoint categories. In this paper, generalized external indexes for comparing two data partitions with overlapping categories are introduced. These indexes can be used as general measures for comparing two partitions of the same data set into overlapping categories. An important issue that is seldom touched in the literature is also addressed in the paper, namely, how to compare two partitions of different subsamples of data. A number of pedagogical examples and three simulation experiments are presented and analyzed in details. A review of recent related work compiled from the literature is also provided. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Produção Vegetal) - FCAV

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The clustering problem consists in finding patterns in a data set in order to divide it into clusters with high within-cluster similarity. This paper presents the study of a problem, here called MMD problem, which aims at finding a clustering with a predefined number of clusters that minimizes the largest within-cluster distance (diameter) among all clusters. There are two main objectives in this paper: to propose heuristics for the MMD and to evaluate the suitability of the best proposed heuristic results according to the real classification of some data sets. Regarding the first objective, the results obtained in the experiments indicate a good performance of the best proposed heuristic that outperformed the Complete Linkage algorithm (the most used method from the literature for this problem). Nevertheless, regarding the suitability of the results according to the real classification of the data sets, the proposed heuristic achieved better quality results than C-Means algorithm, but worse than Complete Linkage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analisi riguardante la tenacizzazione della matrice di laminati compositi. Lo scopo è quello di aumentare la resistenza alla frattura di modo I e, a tal proposito, sono stati modificati gli interstrati di alcuni provini tramite l’introduzione di strati, di diverso spessore, di nanofibre in polivinilidenfluoruro (PVDF). La valutazione di tale metodo di rinforzo è stata eseguita servendosi di dati ottenuti tramite prove sperimentali svolte in laboratorio direttamente dal sottoscritto, che si è occupato dell’elaborazione dei dati servendosi di tecniche e algoritmi di recente ideazione. La necessità primaria per cui si cerca di rinforzare la matrice risiede nel problema più sentito dei laminati compositi in opera da molto tempo: la delaminazione. Oltre a verificare le proprietà meccaniche dei provini modificati sottoponendoli a test DCB, si è utilizzata una tecnica basata sulle emissioni acustiche per comprendere più approfonditamente l’inizio della delaminazione e i meccanismi di rottura che si verificano durante le prove. Quest’ultimi sono illustrati servendosi di un algoritmo di clustering, detto Fuzzy C-means, tramite il quale è stato possibile identificare ogni segnale come appartenente o meno ad un determinato modo di rottura. I risultati mostrano che il PVDF, applicato nelle modalità esposte, è in grado di aumentare la resistenza alla frattura di modo I divenendo contemporaneamente causa di un diverso modo di propagazione della frattura. Infine l’elaborato presenta alcune micrografie delle superfici di rottura, le quali appoggiano i risultati ottenuti nelle precedenti fasi di analisi.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intensity non-uniformity (bias field) correction, contextual constraints over spatial intensity distribution and non-spherical cluster's shape in the feature space are incorporated into the fuzzy c-means (FCM) for segmentation of three-dimensional multi-spectral MR images. The bias field is modeled by a linear combination of smooth polynomial basis functions for fast computation in the clustering iterations. Regularization terms for the neighborhood continuity of either intensity or membership are added into the FCM cost functions. Since the feature space is not isotropic, distance measures, other than the Euclidean distance, are used to account for the shape and volumetric effects of clusters in the feature space. The performance of segmentation is improved by combining the adaptive FCM scheme with the criteria used in Gustafson-Kessel (G-K) and Gath-Geva (G-G) algorithms through the inclusion of the cluster scatter measure. The performance of this integrated approach is quantitatively evaluated on normal MR brain images using the similarity measures. The improvement in the quality of segmentation obtained with our method is also demonstrated by comparing our results with those produced by FSL (FMRIB Software Library), a software package that is commonly used for tissue classification.