698 resultados para Fuzzy Set
Resumo:
The prediction of the traffic behavior could help to make decision about the routing process, as well as enables gains on effectiveness and productivity on the physical distribution. This need motivated the search for technological improvements in the Routing performance in metropolitan areas. The purpose of this paper is to present computational evidences that Artificial Neural Network ANN could be use to predict the traffic behavior in a metropolitan area such So Paulo (around 16 million inhabitants). The proposed methodology involves the application of Rough-Fuzzy Sets to define inference morphology for insertion of the behavior of Dynamic Routing into a structured rule basis, without human expert aid. The dynamics of the traffic parameters are described through membership functions. Rough Sets Theory identifies the attributes that are important, and suggest Fuzzy relations to be inserted on a Rough Neuro Fuzzy Network (RNFN) type Multilayer Perceptron (MLP) and type Radial Basis Function (RBF), in order to get an optimal surface response. To measure the performance of the proposed RNFN, the responses of the unreduced rule basis are compared with the reduced rule one. The results show that by making use of the Feature Reduction through RNFN, it is possible to reduce the need for human expert in the construction of the Fuzzy inference mechanism in such flow process like traffic breakdown. © 2011 IEEE.
Resumo:
This work develops two approaches based on the fuzzy set theory to solve a class of fuzzy mathematical optimization problems with uncertainties in the objective function and in the set of constraints. The first approach is an adaptation of an iterative method that obtains cut levels and later maximizes the membership function of fuzzy decision making using the bound search method. The second one is a metaheuristic approach that adapts a standard genetic algorithm to use fuzzy numbers. Both approaches use a decision criterion called satisfaction level that reaches the best solution in the uncertain environment. Selected examples from the literature are presented to compare and to validate the efficiency of the methods addressed, emphasizing the fuzzy optimization problem in some import-export companies in the south of Spain. © 2012 Brazilian Operations Research Society.
Resumo:
Due to an increased awareness and significant environmental pressures from various stakeholders, companies have begun to realize the significance of incorporating green practices into their daily activities. This paper proposes a framework using Fuzzy TOPSIS to select green suppliers for a Brazilian electronics company; our framework is built on the criteria of green supply chain management (GSCM) practices. An empirical analysis is made, and the data are collected from a set of 12 available suppliers. We use a fuzzy TOPSIS approach to rank the suppliers, and the results of the proposed framework are compared with the ranks obtained by both the geometric mean and the graded mean methods of fuzzy TOPSIS methodology. Then a Spearman rank correlation coefficient is used to find the statistical difference between the ranks obtained by the three methods. Finally, a sensitivity analysis has been performed to examine the influence of the preferences given by the decision makers for the chosen GSCM practices on the selection of green suppliers. Results indicate that the four dominant criteria are Commitment of senior management to GSCM; Product designs that reduce, reuse, recycle, or reclaim materials, components, or energy; Compliance with legal environmental requirements and auditing programs; and Product designs that avoid or reduce toxic or hazardous material use. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Ciências Ambientais - Sorocaba
Resumo:
Pós-graduação em Ciências Ambientais - Sorocaba
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Matemática em Rede Nacional - IBILCE
Resumo:
Dieser Artikel bietet einen Überblick über die Entwicklung und Zusammenhänge der einzelnen Elemente der Fuzzy-Logik, wovon Fuzzy-Set-Theorie die Grundlage bildet. Die Grundproblematik besteht in der Handhabung von linguistischen Informationen, die häufig durch Ungenauigkeit gekennzeichnet sind. Die verschiedenen technischen Anwendungen von Fuzzy-Logik bieten eine Möglichkeit, intelligentere Computersysteme zu konstruieren, die mit unpräzisen Informationen umgehen können. Solche Systeme sind Indizien für die Entstehung einer neuen Ära des Cognitive-Computing, di in diesemArtikel ebenfalls zur Sprache kommt. Für das bessere Verständnis wird der Artikel mit einem Beispiel aus der Meteorologie (d. h. Schnee in Adelboden) begleitet.
Resumo:
La tesis doctoral CONTRIBUCIÓN AL ESTUDIO DE DOS CONCEPTOS BÁSICOS DE LA LÓGICA FUZZY constituye un conjunto de nuevas aportaciones al análisis de dos elementos básicos de la lógica fuzzy: los mecanismos de inferencia y la representación de predicados vagos. La memoria se encuentra dividida en dos partes que corresponden a los dos aspectos señalados. En la Parte I se estudia el concepto básico de «estado lógico borroso». Un estado lógico borroso es un punto fijo de la aplicación generada a partir de la regla de inferencia conocida como modus ponens generalizado. Además, un preorden borroso puede ser representado mediante los preórdenes elementales generados por el conjunto de sus estados lógicos borrosos. El Capítulo 1 está dedicado a caracterizar cuándo dos estados lógicos dan lugar al mismo preorden elemental, obteniéndose también un representante de la clase de todos los estados lógicos que generan el mismo preorden elemental. El Capítulo finaliza con la caracterización del conjunto de estados lógicos borrosos de un preorden elemental. En el Capítulo 2 se obtiene un subconjunto borroso trapezoidal como una clase de una relación de indistinguibilidad. Finalmente, el Capítulo 3 se dedica a estudiar dos tipos de estados lógicos clásicos: los irreducibles y los minimales. En el Capítulo 4, que inicia la Parte II de la memoria, se aborda el problema de obtener la función de compatibilidad de un predicado vago. Se propone un método, basado en el conocimiento del uso del predicado mediante un conjunto de reglas y de ciertos elementos distinguidos, que permite obtener una expresión general de la función de pertenencia generalizada de un subconjunto borroso que realice la función de extensión del predicado borroso. Dicho método permite, en ciertos casos, definir un conjunto de conectivas multivaluadas asociadas al predicado. En el último capítulo se estudia la representación de antónimos y sinónimos en lógica fuzzy a través de auto-morfismos. Se caracterizan los automorfismos sobre el intervalo unidad cuando sobre él se consideran dos operaciones: una t-norma y una t-conorma ambas arquimedianas. The PhD Thesis CONTRIBUCIÓN AL ESTUDIO DE DOS CONCEPTOS BÁSICOS DE LA LÓGICA FUZZY is a contribution to two basic concepts of the Fuzzy Logic. It is divided in two parts, the first is devoted to a mechanism of inference in Fuzzy Logic, and the second to the representation of vague predicates. «Fuzzy Logic State» is the basic concept in Part I. A Fuzzy Logic State is a fixed-point for the mapping giving the Generalized Modus Ponens Rule of inference. Moreover, a fuzzy preordering can be represented by the elementary preorderings generated by its Fuzzy Logic States. Chapter 1 contemplates the identity of elementary preorderings and the selection of representatives for the classes modulo this identity. This chapter finishes with the characterization of the set of Fuzzy Logic States of an elementary preordering. In Chapter 2 a Trapezoidal Fuzzy Set as a class of a relation of Indistinguishability is obtained. Finally, Chapter 3 is devoted to study two types of Classical Logic States: irreducible and minimal. Part II begins with Chapter 4 dealing with the problem of obtaining a Compa¬tibility Function for a vague predicate. When the use of a predicate is known by means of a set of rules and some distinguished elements, a method to obtain the general expression of the Membership Function is presented. This method allows, in some cases, to reach a set of multivalued connectives associated to the predicate. Last Chapter is devoted to the representation of antonyms and synonyms in Fuzzy Logic. When the unit interval [0,1] is endowed with both an archimedean t-norm and a an archi-medean t-conorm, it is showed that the automorphisms' group is just reduced to the identity function.
Resumo:
In this paper, we axiomatically introduce fuzzy multi-measures on bounded lattices. In particular, we make a distinction between four different types of fuzzy set multi-measures on a universe X, considering both the usual or inverse real number ordering of this lattice and increasing or decreasing monotonicity with respect to the number of arguments. We provide results from which we can derive families of measures that hold for the applicable conditions in each case.
Resumo:
In this paper, we present a generalization of a new systemic approach to abstract fuzzy systems. Using a fuzzy relations structure will retain the information provided by degrees of membership. In addition, to better suit the situation to be modelled, it is advisable to use T-norm or T-conorm distinct from the minimum and maximum, respectively. This gain in generality is due to the completeness of the work on a higher level of abstraction. You cannot always reproduce the results obtained previously, and also sometimes different definitions with different views are obtained. In any case this approach proves to be much more effective when modelling reality.
Resumo:
The integration of geo-information from multiple sources and of diverse nature in developing mineral favourability indexes (MFIs) is a well-known problem in mineral exploration and mineral resource assessment. Fuzzy set theory provides a convenient framework to combine and analyse qualitative and quantitative data independently of their source or characteristics. A novel, data-driven formulation for calculating MFIs based on fuzzy analysis is developed in this paper. Different geo-variables are considered fuzzy sets and their appropriate membership functions are defined and modelled. A new weighted average-type aggregation operator is then introduced to generate a new fuzzy set representing mineral favourability. The membership grades of the new fuzzy set are considered as the MFI. The weights for the aggregation operation combine the individual membership functions of the geo-variables, and are derived using information from training areas and L, regression. The technique is demonstrated in a case study of skarn tin deposits and is used to integrate geological, geochemical and magnetic data. The study area covers a total of 22.5 km(2) and is divided into 349 cells, which include nine control cells. Nine geo-variables are considered in this study. Depending on the nature of the various geo-variables, four different types of membership functions are used to model the fuzzy membership of the geo-variables involved. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Automatic signature verification is a well-established and an active area of research with numerous applications such as bank check verification, ATM access, etc. This paper proposes a novel approach to the problem of automatic off-line signature verification and forgery detection. The proposed approach is based on fuzzy modeling that employs the Takagi-Sugeno (TS) model. Signature verification and forgery detection are carried out using angle features extracted from box approach. Each feature corresponds to a fuzzy set. The features are fuzzified by an exponential membership function involved in the TS model, which is modified to include structural parameters. The structural parameters are devised to take account of possible variations due to handwriting styles and to reflect moods. The membership functions constitute weights in the TS model. The optimization of the output of the TS model with respect to the structural parameters yields the solution for the parameters. We have also derived two TS models by considering a rule for each input feature in the first formulation (Multiple rules) and by considering a single rule for all input features in the second formulation. In this work, we have found that TS model with multiple rules is better than TS model with single rule for detecting three types of forgeries; random, skilled and unskilled from a large database of sample signatures in addition to verifying genuine signatures. We have also devised three approaches, viz., an innovative approach and two intuitive approaches using the TS model with multiple rules for improved performance. (C) 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
This paper presents an innovative approach for signature verification and forgery detection based on fuzzy modeling. The signature image is binarized and resized to a fixed size window and is then thinned. The thinned image is then partitioned into a fixed number of eight sub-images called boxes. This partition is done using the horizontal density approximation approach. Each sub-image is then further resized and again partitioned into twelve further sub-images using the uniform partitioning approach. The features of consideration are normalized vector angle (α) from each box. Each feature extracted from sample signatures gives rise to a fuzzy set. Since the choice of a proper fuzzification function is crucial for verification, we have devised a new fuzzification function with structural parameters, which is able to adapt to the variations in fuzzy sets. This function is employed to develop a complete forgery detection and verification system.