768 resultados para Fuzzy Receptive Neuron


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies have revealed marked regional variation in pyramidal cell morphology in primate cortex. In particular, pyramidal cells in human and macaque prefrontal cortex (PFC) are considerably more spinous than those in other cortical regions. PFC pyramidal cells in the New World marmoset monkey, however, are less spinous than those in man and macaques. Taken together, these data suggest that the pyramidal cell has become more branched and more spinous during the evolution of PFC in only some primate lineages. This specialization may be of fundamental importance in determining the cognitive styles of the different species. However, these data are preliminary, with only one New World and two Old World species having been studied. Moreover, the marmoset data were obtained from different cases. In the present study we investigated PFC pyramidal cells in another New World monkey, the owl monkey, to extend the basis for comparison. As in the New World marmoset monkey, prefrontal pyramidal cells in owl monkeys have relatively few spines. These species differences appear to reflect variation in the extent to which PFC circuitry has become specialized during evolution. Highly complex pyramidal cells in PFC appear not to have been a feature of a common prosimian ancestor, but have evolved with the dramatic expansion of PFC in some anthropoid lineages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabalho teve como objetivo utilizar a lógica fuzzy para geração de zonas de manejo, na área agrária e ambiental. Uma das aplicações consistiu da utilização do método fuzzy C-means, para geração de zonas de manejo para a cultura do mamoeiro, em um plantio comercial localizado em São Mateus-ES, com base em determinações realizadas através de amostragens e análises químicas do solo, considerando os atributos: P, K, Ca, Mg, e Saturação por bases (V%). Aplicou-se também a lógica fuzzy para desenvolver e executar um procedimento para dar suporte ao processo de tomada de decisões, envolvendo análise multicritério, gerando mapas de adequabilidade ao uso público e a conservação no Parque Estadual da Cachoeira da Fumaça, no município de Alegre-ES, considerando como fatores a localização da cachoeira, o uso do solo, os recursos hídricos, as trilhas, os locais de acessos, a infraestrutura, a declividade da área, e utilizando a abordagem de Sistema de Informações Geográficas para análise e combinação da base de dados. A partir das zonas de manejo geradas, foi possível explicar a variabilidade espacial dos atributos do solo na área de estudo da cultura do mamoeiro, e observa-se que as similaridades entre as zonas geradas, a partir de diferentes atributos, mostrou variação, mas observa-se uma influência nos dados, principalmente pelos atributos P e V. A partir do zoneamento da Unidade de Conservação foi possível selecionar áreas mais aptas ao ecoturismo, sendo encontradas próximas da cachoeira, trilhas em zonas de reflorestamento e de Mata Atlântica. Quanto às áreas propensas a medidas de conservação localizam-se próximas à cachoeira e às estruturas do parque, devido à maior pressão antrópica exercida nesses locais. Outras áreas que se destacaram, foram as áreas de pastagem, por estarem em estágio de regeneração natural. Os resultados indicam áreas de mesmo potencial de produção do mamoeiro, ou quando aplicado à área ambiental, áreas que devem receber maior cuidado para utilização por ecoturismo e para preservação e servem de base para a tomada de decisões, visando melhor aproveitamento da área.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste artigo, são apresentados testes empíricos para a investigação de ocorrência de fenômenos de sobre-reação e sub-reação no mercado de ações brasileiro. Para esses testes, é proposto um modelo baseado na teoria de conjuntos Fuzzy, que possui forte relação com as heurísticas de representatividade e ancoramento, estabelecidas na teoria de finanças comportamentais. O modelo proposto é empregado para a formação de carteiras e utiliza indicadores financeiros de companhias abertas. Para as análises são utilizados dois conjuntos de ações, um do setor de petróleo e petroquímica e outro do setor têxtil, com indicadores financeiros relativos ao período de 1994 a 2005.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabalho desenvolve um novo modelo Fuzzy-DEA-Game (FDG) para apoiar o estabelecimento de estratégias de produção. Esse modelo combina a Análise Envoltória de Dados (DEA) com conceitos da Teoria dos Conjuntos Fuzzy e do Jogo da Barganha de Nash. O modelo permite uma avaliação da eficiência produtiva e econômica dos produtos, o que pode resultar num portfólio de produtos mais rentáveis e de interesse do mercado consumidor. O modelo foi aplicado em uma empresa do segmento de energia. Os resultados obtidos com a aplicação do modelo FDG mostraram-se aderentes à realidade da empresa estudada e forneceram metas para a redução dos níveis de recursos (entradas) necessários para a fabricação dos produtos e para aumento dos níveis de resultados (saídas) oriundos da comercialização desses produtos. Como resultado adicional importante, o modelo FDG permitiu a identificação dos produtos do portfólio que são mais sensíveis à ocorrência de incerteza.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To introduce a fuzzy linguistic model for evaluating the risk of neonatal death. METHODS: The study is based on the fuzziness of the variables newborn birth weight and gestational age at delivery. The inference used was Mamdani's method. Neonatologists were interviewed to estimate the risk of neonatal death under certain conditions and to allow comparing their opinions and the model values. RESULTS: The results were compared with experts' opinions and the Fuzzy model was able to capture the expert knowledge with a strong correlation (r=0.96). CONCLUSIONS: The linguistic model was able to estimate the risk of neonatal death when compared to experts' performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increased integration of wind power into the electric grid, as nowadays occurs in Portugal, poses new challenges due to its intermittency and volatility. Hence, good forecasting tools play a key role in tackling these challenges. In this paper, an adaptive neuro-fuzzy inference approach is proposed for short-term wind power forecasting. Results from a real-world case study are presented. A thorough comparison is carried out, taking into account the results obtained with other approaches. Numerical results are presented and conclusions are duly drawn. (C) 2011 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a methodology that aims to increase the probability of delivering power to any load point of the electrical distribution system by identifying new investments in distribution components. The methodology is based on statistical failure and repair data of the distribution power system components and it uses fuzzy-probabilistic modelling for system component outage parameters. Fuzzy membership functions of system component outage parameters are obtained by statistical records. A mixed integer non-linear optimization technique is developed to identify adequate investments in distribution networks components that allow increasing the availability level for any customer in the distribution system at minimum cost for the system operator. To illustrate the application of the proposed methodology, the paper includes a case study that considers a real distribution network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper proposes a methodology to increase the probability of delivering power to any load point by identifying new investments in distribution energy systems. The proposed methodology is based on statistical failure and repair data of distribution components and it uses a fuzzy-probabilistic modeling for the components outage parameters. The fuzzy membership functions of the outage parameters of each component are based on statistical records. A mixed integer nonlinear programming optimization model is developed in order to identify the adequate investments in distribution energy system components which allow increasing the probability of delivering power to any customer in the distribution system at the minimum possible cost for the system operator. To illustrate the application of the proposed methodology, the paper includes a case study that considers a 180 bus distribution network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a new methodology to reduce the probability of occurring states that cause load curtailment, while minimizing the involved costs to achieve that reduction. The methodology is supported by a hybrid method based on Fuzzy Set and Monte Carlo Simulation to catch both randomness and fuzziness of component outage parameters of transmission power system. The novelty of this research work consists in proposing two fundamentals approaches: 1) a global steady approach which deals with building the model of a faulted transmission power system aiming at minimizing the unavailability corresponding to each faulted component in transmission power system. This, results in the minimal global cost investment for the faulted components in a system states sample of the transmission network; 2) a dynamic iterative approach that checks individually the investment’s effect on the transmission network. A case study using the Reliability Test System (RTS) 1996 IEEE 24 Buses is presented to illustrate in detail the application of the proposed methodology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a methodology for distribution networks reconfiguration in outage presence in order to choose the reconfiguration that presents the lower power losses. The methodology is based on statistical failure and repair data of the distribution power system components and uses fuzzy-probabilistic modelling for system component outage parameters. Fuzzy membership functions of system component outage parameters are obtained by statistical records. A hybrid method of fuzzy set and Monte Carlo simulation based on the fuzzy-probabilistic models allows catching both randomness and fuzziness of component outage parameters. Once obtained the system states by Monte Carlo simulation, a logical programming algorithm is applied to get all possible reconfigurations for every system state. In order to evaluate the line flows and bus voltages and to identify if there is any overloading, and/or voltage violation a distribution power flow has been applied to select the feasible reconfiguration with lower power losses. To illustrate the application of the proposed methodology to a practical case, the paper includes a case study that considers a real distribution network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a methodology which is based on statistical failure and repair data of the transmission power system components and uses fuzzyprobabilistic modeling for system component outage parameters. Using statistical records allows developing the fuzzy membership functions of system component outage parameters. The proposed hybrid method of fuzzy set and Monte Carlo simulation based on the fuzzy-probabilistic models allows catching both randomness and fuzziness of component outage parameters. A network contingency analysis to identify any overloading or voltage violation in the network is performed once obtained the system states by Monte Carlo simulation. This is followed by a remedial action algorithm, based on optimal power flow, to reschedule generations and alleviate constraint violations and, at the same time, to avoid any load curtailment, if possible, or, otherwise, to minimize the total load curtailment, for the states identified by the contingency analysis. In order to illustrate the application of the proposed methodology to a practical case, the paper will include a case study for the Reliability Test System (RTS) 1996 IEEE 24 BUS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper present a methodology to choose the distribution networks reconfiguration that presents the lower power losses. The proposed methodology is based on statistical failure and repair data of the distribution power system components and uses fuzzy-probabilistic modeling for system component outage parameters. The proposed hybrid method using fuzzy sets and Monte Carlo simulation based on the fuzzyprobabilistic models allows catching both randomness and fuzziness of component outage parameters. A logic programming algorithm is applied, once obtained the system states by Monte Carlo Simulation, to get all possible reconfigurations for each system state. To evaluate the line flows and bus voltages and to identify if there is any overloading, and/or voltage violation an AC load flow has been applied to select the feasible reconfiguration with lower power losses. To illustrate the application of the proposed methodology, the paper includes a case study that considers a 115 buses distribution network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a methodology supported on the data base knowledge discovery process (KDD), in order to find out the failure probability of electrical equipments’, which belong to a real electrical high voltage network. Data Mining (DM) techniques are used to discover a set of outcome failure probability and, therefore, to extract knowledge concerning to the unavailability of the electrical equipments such us power transformers and high-voltages power lines. The framework includes several steps, following the analysis of the real data base, the pre-processing data, the application of DM algorithms, and finally, the interpretation of the discovered knowledge. To validate the proposed methodology, a case study which includes real databases is used. This data have a heavy uncertainty due to climate conditions for this reason it was used fuzzy logic to determine the set of the electrical components failure probabilities in order to reestablish the service. The results reflect an interesting potential of this approach and encourage further research on the topic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To assess the receptive vocabulary of children aged between two years and six months and five years and eleven months who were attending childcare centers and kindergarten schools. METHODS: An analytical cross-sectional study was carried out in the municipality of Embu, Southeastern Brazil. The Peabody Picture Vocabulary Test and analysis of factors associated with children's performance were applied. The sample consisted of 201 children of both genders, aged between two and six years. Statistical analysis was performed using multivariate analysis and logistic regression model. The dependent variable analyzed was test performance and the independent variables were child's age, mother's level of education and family socio-demographic characteristics. RESULTS: It was observed that 44.3% of the children had performances in the test that were below what would be expected for their age. The factors associated with the best performances in the test were child's age (OR=2.4; 95% CI: 1.6-3.5) and mother's education level (OR= 3.2; 95% CI: 1.3-7.4). CONCLUSIONS: Mother's education level is important for child's language development. Settings such as childcare and kindergarten schools are protective factors for child development in families of low income and education.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJETIVO: Desenvolver e comparar dois modelos matemáticos, um deles baseado em regressão logística e o outro em teoria de conjuntos fuzzy, para definir a indicação para a realização do exame cintilográfico a partir de resultados dos exames laboratoriais. MÉTODOS: Foram identificados 194 pacientes que tiveram cálcio e paratormônio séricos medidos a partir da base de registros de cintilografia de paratiróides realizadas em laboratório de diagnóstico de São Paulo, no período de janeiro de 2000 a dezembro de 2004. O modelo de regressão logística foi desenvolvido utilizando-se o software SPSS e o modelo fuzzy, o Matlab. A performance dos modelos foi comparada utilizando-se curvas ROC. RESULTADOS: Os modelos apresentaram diferenças estatisticamente significantes (p=0,026) nos seus desempenhos. A área sob a curva ROC do modelo de regressão logística foi de 0,862 (IC 95%: 0,811-0,913) e do modelo de lógica fuzzy foi 0,887 (IC 95%: 0,840-0,933). Este último destacou-se como particularmente útil porque, ao contrário do modelo logístico, mostrou capacidade de utilizar informações de paratormônio em intervalo em que os valores de cálcio mostraram-se pouco discriminantes. CONCLUSÕES: O modelo matemático baseado em teoria de conjuntos fuzzy pareceu ser mais adequado do que o baseado em regressão logística como método para decisão da realização de cintilografia das paratiróides. Todavia, sendo resultado de um exercício metodológico, inferências sobre o comportamento do objeto podem ser impróprias, dada a não representatividade populacional dos dados.